free-4.12.4: Monads for free

Copyright(C) 2008-2013 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityprovisional
PortabilityMPTCs, fundeps
Safe HaskellSafe
LanguageHaskell2010

Control.Monad.Trans.Free

Contents

Description

The free monad transformer

Synopsis

The base functor

data FreeF f a b #

The base functor for a free monad.

Constructors

Pure a 
Free (f b) 

Instances

Functor f => Bifunctor (FreeF f) # 

Methods

bimap :: (a -> b) -> (c -> d) -> FreeF f a c -> FreeF f b d #

first :: (a -> b) -> FreeF f a c -> FreeF f b c #

second :: (b -> c) -> FreeF f a b -> FreeF f a c #

Traversable f => Bitraversable (FreeF f) # 

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> FreeF f a b -> f (FreeF f c d) #

Foldable f => Bifoldable (FreeF f) # 

Methods

bifold :: Monoid m => FreeF f m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> FreeF f a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> FreeF f a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> FreeF f a b -> c #

Eq1 f => Eq2 (FreeF f) # 

Methods

(==##) :: (Eq a, Eq b) => FreeF f a b -> FreeF f a b -> Bool #

Ord1 f => Ord2 (FreeF f) # 

Methods

compare2 :: (Ord a, Ord b) => FreeF f a b -> FreeF f a b -> Ordering #

Show1 f => Show2 (FreeF f) # 

Methods

showsPrec2 :: (Show a, Show b) => Int -> FreeF f a b -> ShowS #

showList2 :: (Show a, Show b) => [FreeF f a b] -> ShowS #

Read1 f => Read2 (FreeF f) # 

Methods

readsPrec2 :: (Read a, Read b) => Int -> ReadS (FreeF f a b) #

readList2 :: (Read a, Read b) => ReadS [FreeF f a b] #

Functor f => Functor (FreeF f a) # 

Methods

fmap :: (a -> b) -> FreeF f a a -> FreeF f a b #

(<$) :: a -> FreeF f a b -> FreeF f a a #

Foldable f => Foldable (FreeF f a) # 

Methods

fold :: Monoid m => FreeF f a m -> m #

foldMap :: Monoid m => (a -> m) -> FreeF f a a -> m #

foldr :: (a -> b -> b) -> b -> FreeF f a a -> b #

foldr' :: (a -> b -> b) -> b -> FreeF f a a -> b #

foldl :: (b -> a -> b) -> b -> FreeF f a a -> b #

foldl' :: (b -> a -> b) -> b -> FreeF f a a -> b #

foldr1 :: (a -> a -> a) -> FreeF f a a -> a #

foldl1 :: (a -> a -> a) -> FreeF f a a -> a #

toList :: FreeF f a a -> [a] #

null :: FreeF f a a -> Bool #

length :: FreeF f a a -> Int #

elem :: Eq a => a -> FreeF f a a -> Bool #

maximum :: Ord a => FreeF f a a -> a #

minimum :: Ord a => FreeF f a a -> a #

sum :: Num a => FreeF f a a -> a #

product :: Num a => FreeF f a a -> a #

Traversable f => Traversable (FreeF f a) # 

Methods

traverse :: Applicative f => (a -> f b) -> FreeF f a a -> f (FreeF f a b) #

sequenceA :: Applicative f => FreeF f a (f a) -> f (FreeF f a a) #

mapM :: Monad m => (a -> m b) -> FreeF f a a -> m (FreeF f a b) #

sequence :: Monad m => FreeF f a (m a) -> m (FreeF f a a) #

(Eq1 f, Eq a) => Eq1 (FreeF f a) # 

Methods

(==#) :: Eq a => FreeF f a a -> FreeF f a a -> Bool #

(Ord1 f, Ord a) => Ord1 (FreeF f a) # 

Methods

compare1 :: Ord a => FreeF f a a -> FreeF f a a -> Ordering #

(Show1 f, Show a) => Show1 (FreeF f a) # 

Methods

showsPrec1 :: Show a => Int -> FreeF f a a -> ShowS #

showList1 :: Show a => [FreeF f a a] -> ShowS #

(Read1 f, Read a) => Read1 (FreeF f a) # 

Methods

readsPrec1 :: Read a => Int -> ReadS (FreeF f a a) #

readList1 :: Read a => ReadS [FreeF f a a] #

(Eq (f b), Eq a) => Eq (FreeF f a b) # 

Methods

(==) :: FreeF f a b -> FreeF f a b -> Bool #

(/=) :: FreeF f a b -> FreeF f a b -> Bool #

(Ord (f b), Ord a) => Ord (FreeF f a b) # 

Methods

compare :: FreeF f a b -> FreeF f a b -> Ordering #

(<) :: FreeF f a b -> FreeF f a b -> Bool #

(<=) :: FreeF f a b -> FreeF f a b -> Bool #

(>) :: FreeF f a b -> FreeF f a b -> Bool #

(>=) :: FreeF f a b -> FreeF f a b -> Bool #

max :: FreeF f a b -> FreeF f a b -> FreeF f a b #

min :: FreeF f a b -> FreeF f a b -> FreeF f a b #

(Read (f b), Read a) => Read (FreeF f a b) # 

Methods

readsPrec :: Int -> ReadS (FreeF f a b) #

readList :: ReadS [FreeF f a b] #

readPrec :: ReadPrec (FreeF f a b) #

readListPrec :: ReadPrec [FreeF f a b] #

(Show (f b), Show a) => Show (FreeF f a b) # 

Methods

showsPrec :: Int -> FreeF f a b -> ShowS #

show :: FreeF f a b -> String #

showList :: [FreeF f a b] -> ShowS #

The free monad transformer

newtype FreeT f m a #

The "free monad transformer" for a functor f

Constructors

FreeT 

Fields

Instances

(Functor f, MonadError e m) => MonadError e (FreeT f m) # 

Methods

throwError :: e -> FreeT f m a #

catchError :: FreeT f m a -> (e -> FreeT f m a) -> FreeT f m a #

(Functor f, MonadReader r m) => MonadReader r (FreeT f m) # 

Methods

ask :: FreeT f m r #

local :: (r -> r) -> FreeT f m a -> FreeT f m a #

reader :: (r -> a) -> FreeT f m a #

(Functor f, MonadState s m) => MonadState s (FreeT f m) # 

Methods

get :: FreeT f m s #

put :: s -> FreeT f m () #

state :: (s -> (a, s)) -> FreeT f m a #

(Functor f, MonadWriter w m) => MonadWriter w (FreeT f m) # 

Methods

writer :: (a, w) -> FreeT f m a #

tell :: w -> FreeT f m () #

listen :: FreeT f m a -> FreeT f m (a, w) #

pass :: FreeT f m (a, w -> w) -> FreeT f m a #

(Functor f, Monad m) => MonadFree f (FreeT f m) # 

Methods

wrap :: f (FreeT f m a) -> FreeT f m a #

MonadTrans (FreeT f) # 

Methods

lift :: Monad m => m a -> FreeT f m a #

(Functor f, Monad m) => Monad (FreeT f m) # 

Methods

(>>=) :: FreeT f m a -> (a -> FreeT f m b) -> FreeT f m b #

(>>) :: FreeT f m a -> FreeT f m b -> FreeT f m b #

return :: a -> FreeT f m a #

fail :: String -> FreeT f m a #

(Functor f, Monad m) => Functor (FreeT f m) # 

Methods

fmap :: (a -> b) -> FreeT f m a -> FreeT f m b #

(<$) :: a -> FreeT f m b -> FreeT f m a #

(Functor f, Monad m) => Applicative (FreeT f m) # 

Methods

pure :: a -> FreeT f m a #

(<*>) :: FreeT f m (a -> b) -> FreeT f m a -> FreeT f m b #

(*>) :: FreeT f m a -> FreeT f m b -> FreeT f m b #

(<*) :: FreeT f m a -> FreeT f m b -> FreeT f m a #

(Foldable m, Foldable f) => Foldable (FreeT f m) # 

Methods

fold :: Monoid m => FreeT f m m -> m #

foldMap :: Monoid m => (a -> m) -> FreeT f m a -> m #

foldr :: (a -> b -> b) -> b -> FreeT f m a -> b #

foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b #

foldl :: (b -> a -> b) -> b -> FreeT f m a -> b #

foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b #

foldr1 :: (a -> a -> a) -> FreeT f m a -> a #

foldl1 :: (a -> a -> a) -> FreeT f m a -> a #

toList :: FreeT f m a -> [a] #

null :: FreeT f m a -> Bool #

length :: FreeT f m a -> Int #

elem :: Eq a => a -> FreeT f m a -> Bool #

maximum :: Ord a => FreeT f m a -> a #

minimum :: Ord a => FreeT f m a -> a #

sum :: Num a => FreeT f m a -> a #

product :: Num a => FreeT f m a -> a #

(Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) # 

Methods

traverse :: Applicative f => (a -> f b) -> FreeT f m a -> f (FreeT f m b) #

sequenceA :: Applicative f => FreeT f m (f a) -> f (FreeT f m a) #

mapM :: Monad m => (a -> m b) -> FreeT f m a -> m (FreeT f m b) #

sequence :: Monad m => FreeT f m (m a) -> m (FreeT f m a) #

(Functor f, MonadIO m) => MonadIO (FreeT f m) # 

Methods

liftIO :: IO a -> FreeT f m a #

(Functor f, MonadPlus m) => Alternative (FreeT f m) # 

Methods

empty :: FreeT f m a #

(<|>) :: FreeT f m a -> FreeT f m a -> FreeT f m a #

some :: FreeT f m a -> FreeT f m [a] #

many :: FreeT f m a -> FreeT f m [a] #

(Functor f, MonadPlus m) => MonadPlus (FreeT f m) # 

Methods

mzero :: FreeT f m a #

mplus :: FreeT f m a -> FreeT f m a -> FreeT f m a #

(Functor f, MonadThrow m) => MonadThrow (FreeT f m) # 

Methods

throwM :: Exception e => e -> FreeT f m a #

(Functor f, MonadCatch m) => MonadCatch (FreeT f m) # 

Methods

catch :: Exception e => FreeT f m a -> (e -> FreeT f m a) -> FreeT f m a #

(Functor f, MonadCont m) => MonadCont (FreeT f m) # 

Methods

callCC :: ((a -> FreeT f m b) -> FreeT f m a) -> FreeT f m a #

(Functor f, Eq1 f, Functor m, Eq1 m) => Eq1 (FreeT f m) # 

Methods

(==#) :: Eq a => FreeT f m a -> FreeT f m a -> Bool #

(Functor f, Ord1 f, Functor m, Ord1 m) => Ord1 (FreeT f m) # 

Methods

compare1 :: Ord a => FreeT f m a -> FreeT f m a -> Ordering #

(Functor f, Show1 f, Functor m, Show1 m) => Show1 (FreeT f m) # 

Methods

showsPrec1 :: Show a => Int -> FreeT f m a -> ShowS #

showList1 :: Show a => [FreeT f m a] -> ShowS #

(Functor f, Read1 f, Functor m, Read1 m) => Read1 (FreeT f m) # 

Methods

readsPrec1 :: Read a => Int -> ReadS (FreeT f m a) #

readList1 :: Read a => ReadS [FreeT f m a] #

(Functor f, Monad m) => Apply (FreeT f m) # 

Methods

(<.>) :: FreeT f m (a -> b) -> FreeT f m a -> FreeT f m b #

(.>) :: FreeT f m a -> FreeT f m b -> FreeT f m b #

(<.) :: FreeT f m a -> FreeT f m b -> FreeT f m a #

(Functor f, Monad m) => Bind (FreeT f m) # 

Methods

(>>-) :: FreeT f m a -> (a -> FreeT f m b) -> FreeT f m b #

join :: FreeT f m (FreeT f m a) -> FreeT f m a #

Eq (m (FreeF f a (FreeT f m a))) => Eq (FreeT f m a) # 

Methods

(==) :: FreeT f m a -> FreeT f m a -> Bool #

(/=) :: FreeT f m a -> FreeT f m a -> Bool #

Ord (m (FreeF f a (FreeT f m a))) => Ord (FreeT f m a) # 

Methods

compare :: FreeT f m a -> FreeT f m a -> Ordering #

(<) :: FreeT f m a -> FreeT f m a -> Bool #

(<=) :: FreeT f m a -> FreeT f m a -> Bool #

(>) :: FreeT f m a -> FreeT f m a -> Bool #

(>=) :: FreeT f m a -> FreeT f m a -> Bool #

max :: FreeT f m a -> FreeT f m a -> FreeT f m a #

min :: FreeT f m a -> FreeT f m a -> FreeT f m a #

Read (m (FreeF f a (FreeT f m a))) => Read (FreeT f m a) # 

Methods

readsPrec :: Int -> ReadS (FreeT f m a) #

readList :: ReadS [FreeT f m a] #

readPrec :: ReadPrec (FreeT f m a) #

readListPrec :: ReadPrec [FreeT f m a] #

Show (m (FreeF f a (FreeT f m a))) => Show (FreeT f m a) # 

Methods

showsPrec :: Int -> FreeT f m a -> ShowS #

show :: FreeT f m a -> String #

showList :: [FreeT f m a] -> ShowS #

The free monad

type Free f = FreeT f Identity #

The "free monad" for a functor f.

free :: FreeF f a (Free f a) -> Free f a #

Pushes a layer into a free monad value.

runFree :: Free f a -> FreeF f a (Free f a) #

Evaluates the first layer out of a free monad value.

Operations

liftF :: (Functor f, MonadFree f m) => f a -> m a #

A version of lift that can be used with just a Functor for f.

iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a #

Tear down a free monad transformer using iteration.

iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a #

Tear down a free monad transformer using iteration over a transformer.

hoistFreeT :: (Monad m, Functor f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b #

Lift a monad homomorphism from m to n into a monad homomorphism from FreeT f m to FreeT f n

hoistFreeT :: (Monad m, Functor f) => (m ~> n) -> FreeT f m ~> FreeT f n

transFreeT :: (Monad m, Functor g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b #

Lift a natural transformation from f to g into a monad homomorphism from FreeT f m to FreeT g m

joinFreeT :: (Monad m, Traversable f) => FreeT f m a -> m (Free f a) #

Pull out and join m layers of FreeT f m a.

cutoff :: (Functor f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a) #

Cuts off a tree of computations at a given depth. If the depth is 0 or less, no computation nor monadic effects will take place.

Some examples (n ≥ 0):

cutoff 0     _        ≡ return Nothing
cutoff (n+1) . returnreturn . Just
cutoff (n+1) . liftlift . liftM Just
cutoff (n+1) . wrapwrap . fmap (cutoff n)

Calling retract . cutoff n is always terminating, provided each of the steps in the iteration is terminating.

partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b #

partialIterT n phi m interprets first n layers of m using phi. This is sort of the opposite for cutoff.

Some examples (n ≥ 0):

partialIterT 0 _ m              ≡ m
partialIterT (n+1) phi . returnreturn
partialIterT (n+1) phi . liftlift
partialIterT (n+1) phi . wrapjoin . lift . phi

intersperseT :: (Monad m, Functor f) => f a -> FreeT f m b -> FreeT f m b #

intersperseT f m inserts a layer f between every two layers in m.

intersperseT f . returnreturn
intersperseT f . liftlift
intersperseT f . wrapwrap . fmap (iterTM (wrap . (<$ f) . wrap))

intercalateT :: (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b #

intercalateT f m inserts a layer f between every two layers in m and then retracts the result.

intercalateT f ≡ retractT . intersperseT f

retractT :: (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a #

Tear down a free monad transformer using Monad instance for t m.

Operations of free monad

retract :: Monad f => Free f a -> f a #

retract is the left inverse of liftF

retract . liftF = id

iter :: Functor f => (f a -> a) -> Free f a -> a #

Tear down a Free Monad using iteration.

iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> Free f a -> m a #

Like iter for monadic values.

Free Monads With Class

class Monad m => MonadFree f m | m -> f where #

Monads provide substitution (fmap) and renormalization (join):

m >>= f = join (fmap f m)

A free Monad is one that does no work during the normalization step beyond simply grafting the two monadic values together.

[] is not a free Monad (in this sense) because join [[a]] smashes the lists flat.

On the other hand, consider:

data Tree a = Bin (Tree a) (Tree a) | Tip a
instance Monad Tree where
  return = Tip
  Tip a >>= f = f a
  Bin l r >>= f = Bin (l >>= f) (r >>= f)

This Monad is the free Monad of Pair:

data Pair a = Pair a a

And we could make an instance of MonadFree for it directly:

instance MonadFree Pair Tree where
   wrap (Pair l r) = Bin l r

Or we could choose to program with Free Pair instead of Tree and thereby avoid having to define our own Monad instance.

Moreover, Control.Monad.Free.Church provides a MonadFree instance that can improve the asymptotic complexity of code that constructs free monads by effectively reassociating the use of (>>=). You may also want to take a look at the kan-extensions package (http://hackage.haskell.org/package/kan-extensions).

See Free for a more formal definition of the free Monad for a Functor.

Methods

wrap :: f (m a) -> m a #

Add a layer.

wrap (fmap f x) ≡ wrap (fmap return x) >>= f

wrap :: (m ~ t n, MonadTrans t, MonadFree f n, Functor f) => f (m a) -> m a #

Add a layer.

wrap (fmap f x) ≡ wrap (fmap return x) >>= f

Instances

(Functor f, MonadFree f m) => MonadFree f (ListT m) # 

Methods

wrap :: f (ListT m a) -> ListT m a #

(Functor f, MonadFree f m) => MonadFree f (MaybeT m) # 

Methods

wrap :: f (MaybeT m a) -> MaybeT m a #

Functor f => MonadFree f (Free f) # 

Methods

wrap :: f (Free f a) -> Free f a #

Functor f => MonadFree f (F f) # 

Methods

wrap :: f (F f a) -> F f a #

Monad m => MonadFree Identity (IterT m) # 

Methods

wrap :: Identity (IterT m a) -> IterT m a #

(Functor f, MonadFree f m) => MonadFree f (ExceptT e m) # 

Methods

wrap :: f (ExceptT e m a) -> ExceptT e m a #

(Functor f, MonadFree f m, Error e) => MonadFree f (ErrorT e m) # 

Methods

wrap :: f (ErrorT e m a) -> ErrorT e m a #

(Functor f, MonadFree f m) => MonadFree f (IdentityT * m) # 

Methods

wrap :: f (IdentityT * m a) -> IdentityT * m a #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) # 

Methods

wrap :: f (WriterT w m a) -> WriterT w m a #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) # 

Methods

wrap :: f (WriterT w m a) -> WriterT w m a #

(Functor f, MonadFree f m) => MonadFree f (StateT s m) # 

Methods

wrap :: f (StateT s m a) -> StateT s m a #

(Functor f, MonadFree f m) => MonadFree f (StateT s m) # 

Methods

wrap :: f (StateT s m a) -> StateT s m a #

(Functor f, Monad m) => MonadFree f (FreeT f m) # 

Methods

wrap :: f (FreeT f m a) -> FreeT f m a #

MonadFree f (FT f m) # 

Methods

wrap :: f (FT f m a) -> FT f m a #

(Functor f, MonadFree f m) => MonadFree f (ContT * r m) # 

Methods

wrap :: f (ContT * r m a) -> ContT * r m a #

(Functor f, MonadFree f m) => MonadFree f (ReaderT * e m) # 

Methods

wrap :: f (ReaderT * e m a) -> ReaderT * e m a #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) # 

Methods

wrap :: f (RWST r w s m a) -> RWST r w s m a #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) # 

Methods

wrap :: f (RWST r w s m a) -> RWST r w s m a #