memory-0.14.3: memory and related abstraction stuff

LicenseBSD-style
MaintainerVincent Hanquez <vincent@snarc.org>
Stabilitystable
PortabilityGood
Safe HaskellNone
LanguageHaskell2010

Data.ByteArray

Contents

Description

Simple and efficient byte array types

This module should be imported qualified.

Synopsis

ByteArray Classes

class ByteArrayAccess ba where #

Class to Access size properties and data of a ByteArray

Minimal complete definition

length, withByteArray

Methods

length :: ba -> Int #

Return the length in bytes of a bytearray

withByteArray :: ba -> (Ptr p -> IO a) -> IO a #

Allow to use using a pointer

Instances

ByteArrayAccess ByteString # 

Methods

length :: ByteString -> Int #

withByteArray :: ByteString -> (Ptr p -> IO a) -> IO a #

ByteArrayAccess String # 

Methods

length :: String -> Int #

withByteArray :: String -> (Ptr p -> IO a) -> IO a #

ByteArrayAccess ScrubbedBytes # 

Methods

length :: ScrubbedBytes -> Int #

withByteArray :: ScrubbedBytes -> (Ptr p -> IO a) -> IO a #

ByteArrayAccess MemView # 

Methods

length :: MemView -> Int #

withByteArray :: MemView -> (Ptr p -> IO a) -> IO a #

ByteArrayAccess Bytes # 

Methods

length :: Bytes -> Int #

withByteArray :: Bytes -> (Ptr p -> IO a) -> IO a #

PrimType ty => ByteArrayAccess (UArray ty) # 

Methods

length :: UArray ty -> Int #

withByteArray :: UArray ty -> (Ptr p -> IO a) -> IO a #

ByteArrayAccess bytes => ByteArrayAccess (View bytes) # 

Methods

length :: View bytes -> Int #

withByteArray :: View bytes -> (Ptr p -> IO a) -> IO a #

class (Eq ba, Ord ba, Monoid ba, ByteArrayAccess ba) => ByteArray ba where #

Class to allocate new ByteArray of specific size

Minimal complete definition

allocRet

Methods

allocRet :: Int -> (Ptr p -> IO a) -> IO (a, ba) #

Instances

ByteArray ByteString # 

Methods

allocRet :: Int -> (Ptr p -> IO a) -> IO (a, ByteString) #

ByteArray ScrubbedBytes # 

Methods

allocRet :: Int -> (Ptr p -> IO a) -> IO (a, ScrubbedBytes) #

ByteArray Bytes # 

Methods

allocRet :: Int -> (Ptr p -> IO a) -> IO (a, Bytes) #

ByteArray built-in types

data Bytes #

Simplest Byte Array

Instances

Eq Bytes # 

Methods

(==) :: Bytes -> Bytes -> Bool #

(/=) :: Bytes -> Bytes -> Bool #

Ord Bytes # 

Methods

compare :: Bytes -> Bytes -> Ordering #

(<) :: Bytes -> Bytes -> Bool #

(<=) :: Bytes -> Bytes -> Bool #

(>) :: Bytes -> Bytes -> Bool #

(>=) :: Bytes -> Bytes -> Bool #

max :: Bytes -> Bytes -> Bytes #

min :: Bytes -> Bytes -> Bytes #

Show Bytes # 

Methods

showsPrec :: Int -> Bytes -> ShowS #

show :: Bytes -> String #

showList :: [Bytes] -> ShowS #

Monoid Bytes # 

Methods

mempty :: Bytes #

mappend :: Bytes -> Bytes -> Bytes #

mconcat :: [Bytes] -> Bytes #

NFData Bytes # 

Methods

rnf :: Bytes -> () #

ByteArray Bytes # 

Methods

allocRet :: Int -> (Ptr p -> IO a) -> IO (a, Bytes) #

ByteArrayAccess Bytes # 

Methods

length :: Bytes -> Int #

withByteArray :: Bytes -> (Ptr p -> IO a) -> IO a #

data ScrubbedBytes #

ScrubbedBytes is a memory chunk which have the properties of:

  • Being scrubbed after its goes out of scope.
  • A Show instance that doesn't actually show any content
  • A Eq instance that is constant time

data MemView #

A simple abstraction to a piece of memory.

Do beware that garbage collection related to piece of memory could be triggered before this is used.

Only use with the appropriate handler has been used (e.g. withForeignPtr on ForeignPtr)

Constructors

MemView !(Ptr Word8) !Int 

Instances

memViewPlus :: MemView -> Int -> MemView #

Increase the memory view while reducing the size of the window

this is useful as an abtraction to represent the current offset in a buffer, and the remaining bytes left.

data View bytes #

a view on a given bytes

Equality test in constant time

Instances

ByteArrayAccess bytes => Eq (View bytes) # 

Methods

(==) :: View bytes -> View bytes -> Bool #

(/=) :: View bytes -> View bytes -> Bool #

ByteArrayAccess bytes => Ord (View bytes) # 

Methods

compare :: View bytes -> View bytes -> Ordering #

(<) :: View bytes -> View bytes -> Bool #

(<=) :: View bytes -> View bytes -> Bool #

(>) :: View bytes -> View bytes -> Bool #

(>=) :: View bytes -> View bytes -> Bool #

max :: View bytes -> View bytes -> View bytes #

min :: View bytes -> View bytes -> View bytes #

ByteArrayAccess bytes => Show (View bytes) # 

Methods

showsPrec :: Int -> View bytes -> ShowS #

show :: View bytes -> String #

showList :: [View bytes] -> ShowS #

ByteArrayAccess bytes => ByteArrayAccess (View bytes) # 

Methods

length :: View bytes -> Int #

withByteArray :: View bytes -> (Ptr p -> IO a) -> IO a #

view #

Arguments

:: ByteArrayAccess bytes 
=> bytes

the byte array we put a view on

-> Int

the offset to start the byte array on

-> Int

the size of the view

-> View bytes 

create a view on a given bytearray

This function update the offset and the size in order to guarantee:

  • offset >= 0
  • size >= 0
  • offset < length
  • size =< length - offset

takeView #

Arguments

:: ByteArrayAccess bytes 
=> bytes

byte aray

-> Int

size of the view

-> View bytes 

create a view from the given bytearray

dropView #

Arguments

:: ByteArrayAccess bytes 
=> bytes

byte array

-> Int

the number of bytes do dropped before creating the view

-> View bytes 

create a view from the given byte array starting after having dropped the fist n bytes

ByteArray methods

alloc :: ByteArray ba => Int -> (Ptr p -> IO ()) -> IO ba #

Allocate a new bytearray of specific size, and run the initializer on this memory

allocAndFreeze :: ByteArray a => Int -> (Ptr p -> IO ()) -> a #

similar to alloc but hide the allocation and initializer in a pure context

create :: ByteArray ba => Int -> (Ptr p -> IO ()) -> IO ba #

Allocate a new bytearray of specific size, and run the initializer on this memory

unsafeCreate :: ByteArray a => Int -> (Ptr p -> IO ()) -> a #

similar to create but hide the allocation and initializer in a pure context

pack :: ByteArray a => [Word8] -> a #

Pack a list of bytes into a bytearray

unpack :: ByteArrayAccess a => a -> [Word8] #

Un-pack a bytearray into a list of bytes

uncons :: ByteArray a => a -> Maybe (Word8, a) #

returns the first byte, and the remaining bytearray if the bytearray is not null

empty :: ByteArray a => a #

Create an empty byte array

singleton :: ByteArray a => Word8 -> a #

Create a byte array from a single byte

cons :: ByteArray a => Word8 -> a -> a #

prepend a single byte to a byte array

snoc :: ByteArray a => a -> Word8 -> a #

append a single byte to a byte array

null :: ByteArrayAccess a => a -> Bool #

Check if a byte array is empty

replicate :: ByteArray ba => Int -> Word8 -> ba #

Create a bytearray of a specific size containing a repeated byte value

zero :: ByteArray ba => Int -> ba #

Create a bytearray of a specific size initialized to 0

copy :: (ByteArrayAccess bs1, ByteArray bs2) => bs1 -> (Ptr p -> IO ()) -> IO bs2 #

Duplicate a bytearray into another bytearray, and run an initializer on it

take :: ByteArray bs => Int -> bs -> bs #

Take the first n byte of a bytearray

drop :: ByteArray bs => Int -> bs -> bs #

drop the first n byte of a bytearray

span :: ByteArray bs => (Word8 -> Bool) -> bs -> (bs, bs) #

Split a bytearray at the point where pred becomes invalid

convert :: (ByteArrayAccess bin, ByteArray bout) => bin -> bout #

Convert a bytearray to another type of bytearray

copyRet :: (ByteArrayAccess bs1, ByteArray bs2) => bs1 -> (Ptr p -> IO a) -> IO (a, bs2) #

Similar to copy but also provide a way to return a value from the initializer

copyAndFreeze :: (ByteArrayAccess bs1, ByteArray bs2) => bs1 -> (Ptr p -> IO ()) -> bs2 #

Similiar to copy but expect the resulting bytearray in a pure context

splitAt :: ByteArray bs => Int -> bs -> (bs, bs) #

Split a bytearray at a specific length in two bytearray

xor :: (ByteArrayAccess a, ByteArrayAccess b, ByteArray c) => a -> b -> c #

Create a xor of bytes between a and b.

the returns byte array is the size of the smallest input.

index :: ByteArrayAccess a => a -> Int -> Word8 #

return a specific byte indexed by a number from 0 in a bytearray

unsafe, no bound checking are done

eq :: (ByteArrayAccess bs1, ByteArrayAccess bs2) => bs1 -> bs2 -> Bool #

Check if two bytearray are equals

This is not constant time, as soon some byte differs the function will returns. use constEq in sensitive context where timing matters.

constEq :: (ByteArrayAccess bs1, ByteArrayAccess bs2) => bs1 -> bs2 -> Bool #

A constant time equality test for 2 ByteArrayAccess values.

If values are of 2 different sizes, the function will abort early without comparing any bytes.

compared to == , this function will go over all the bytes present before yielding a result even when knowing the overall result early in the processing.

any :: ByteArrayAccess ba => (Word8 -> Bool) -> ba -> Bool #

Check if any element of a byte array satisfies a predicate

all :: ByteArrayAccess ba => (Word8 -> Bool) -> ba -> Bool #

Check if all elements of a byte array satisfy a predicate

append :: ByteArray bs => bs -> bs -> bs #

append one bytearray to the other

concat :: (ByteArrayAccess bin, ByteArray bout) => [bin] -> bout #

Concatenate bytearray into a larger bytearray