Copyright | (C) 2012-2015 Edward Kmett |
---|---|
License | BSD-style (see the file LICENSE) |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Stability | experimental |
Portability | non-portable |
Safe Haskell | Trustworthy |
Language | Haskell98 |
Linear.V
Description
n-D Vectors
- newtype V n a = V {}
- int :: Int -> TypeQ
- dim :: forall n a. Dim n => V n a -> Int
- class Dim n where
- reifyDim :: Int -> (forall n. Dim n => Proxy n -> r) -> r
- reifyVector :: forall a r. Vector a -> (forall n. Dim n => V n a -> r) -> r
- reifyDimNat :: Int -> (forall n. KnownNat n => Proxy n -> r) -> r
- reifyVectorNat :: forall a r. Vector a -> (forall n. KnownNat n => V n a -> r) -> r
- fromVector :: forall n a. Dim n => Vector a -> Maybe (V n a)
- class Finite v where
- _V :: (Finite u, Finite v) => Iso (V (Size u) a) (V (Size v) b) (u a) (v b)
- _V' :: Finite v => Iso (V (Size v) a) (V (Size v) b) (v a) (v b)
Documentation
Instances
FunctorWithIndex Int (V k n) # | |
FoldableWithIndex Int (V k n) # | |
TraversableWithIndex Int (V k n) # | |
(Dim k n, Unbox a) => Vector Vector (V k n a) # | |
(Dim k n, Unbox a) => MVector MVector (V k n a) # | |
Dim k n => Dim * (V k n a) # | |
Dim k n => Monad (V k n) # | |
Functor (V k n) # | |
Dim k n => MonadFix (V k n) # | |
Dim k n => Applicative (V k n) # | |
Foldable (V k n) # | |
Traversable (V k n) # | |
Generic1 (V k n) # | |
Dim k n => Distributive (V k n) # | |
Dim k n => Representable (V k n) # | |
Eq1 (V k n) # | |
Ord1 (V k n) # | |
Dim k n => Read1 (V k n) # | |
Show1 (V k n) # | |
Dim k n => MonadZip (V k n) # | |
Dim k n => Serial1 (V k n) # | |
Apply (V k n) # | |
Bind (V k n) # | |
Dim k n => Additive (V k n) # | |
Dim k n => Metric (V k n) # | |
Finite (V Nat n) # | |
Dim k n => Trace (V k n) # | |
Dim * n => Affine (V * n) # | |
(Bounded a, Dim k n) => Bounded (V k n a) # | |
Eq a => Eq (V k n a) # | |
(Dim k n, Floating a) => Floating (V k n a) # | |
(Dim k n, Fractional a) => Fractional (V k n a) # | |
(Typeable (* -> *) (V k n), Typeable * (V k n a), Dim k n, Data a) => Data (V k n a) # | |
(Dim k n, Num a) => Num (V k n a) # | |
Ord a => Ord (V k n a) # | |
Read a => Read (V k n a) # | |
Show a => Show (V k n a) # | |
Generic (V k n a) # | |
(Dim k n, Storable a) => Storable (V k n a) # | |
(Dim k n, Binary a) => Binary (V k n a) # | |
(Dim k n, Serial a) => Serial (V k n a) # | |
(Dim k n, Serialize a) => Serialize (V k n a) # | |
NFData a => NFData (V k n a) # | |
(Dim k n, Unbox a) => Unbox (V k n a) # | |
Ixed (V k n a) # | |
(Dim k n, Epsilon a) => Epsilon (V k n a) # | |
Each (V k n a) (V k n b) a b # | |
data MVector s (V k n a) # | |
type Rep1 (V k n) # | |
type Rep (V k n) # | |
type Size (V Nat n) # | |
type Diff (V * n) # | |
type Rep (V k n a) # | |
data Vector (V k n a) # | |
type Index (V k n a) # | |
type IxValue (V k n a) # | |
This can be used to generate a template haskell splice for a type level version of a given int
.
This does not use GHC TypeLits, instead it generates a numeric type by hand similar to the ones used in the "Functional Pearl: Implicit Configurations" paper by Oleg Kiselyov and Chung-Chieh Shan.
instance Num (Q Exp)
provided in this package allows writing $(3)
instead of $(int 3)
. Sometimes the two will produce the same
representation (if compiled without the -DUSE_TYPE_LITS
preprocessor
directive).
Minimal complete definition
Methods
reflectDim :: p n -> Int #
reifyVector :: forall a r. Vector a -> (forall n. Dim n => V n a -> r) -> r #
reifyDimNat :: Int -> (forall n. KnownNat n => Proxy n -> r) -> r #
reifyVectorNat :: forall a r. Vector a -> (forall n. KnownNat n => V n a -> r) -> r #