statistics-0.15.0.0: A library of statistical types, data, and functions

Statistics.Distribution.Normal

Contents

Description

The normal distribution. This is a continuous probability distribution that describes data that cluster around a mean.

Synopsis

# Documentation

The normal distribution.

Instances
 # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NormalDistribution -> c NormalDistribution #gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NormalDistribution #dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NormalDistribution) #dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NormalDistribution) #gmapT :: (forall b. Data b => b -> b) -> NormalDistribution -> NormalDistribution #gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NormalDistribution -> r #gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NormalDistribution -> r #gmapQ :: (forall d. Data d => d -> u) -> NormalDistribution -> [u] #gmapQi :: Int -> (forall d. Data d => d -> u) -> NormalDistribution -> u #gmapM :: Monad m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution #gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution #gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NormalDistribution -> m NormalDistribution # # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal MethodsshowList :: [NormalDistribution] -> ShowS # # Instance detailsDefined in Statistics.Distribution.Normal Associated Typestype Rep NormalDistribution :: Type -> Type # Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal MethodsputList :: [NormalDistribution] -> Put # # Instance detailsDefined in Statistics.Distribution.Normal MethodsgenContVar :: PrimMonad m => NormalDistribution -> Gen (PrimState m) -> m Double # # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal Methods # Variance is estimated using maximum likelihood method (biased estimation).Returns Nothing if sample contains less than one element or variance is zero (all elements are equal) Instance detailsDefined in Statistics.Distribution.Normal Methods # Instance detailsDefined in Statistics.Distribution.Normal type Rep NormalDistribution = D1 (MetaData "NormalDistribution" "Statistics.Distribution.Normal" "statistics-0.15.0.0-KYJLg9h4jsl1bBm8KLc3A8" False) (C1 (MetaCons "ND" PrefixI True) ((S1 (MetaSel (Just "mean") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double) :*: S1 (MetaSel (Just "stdDev") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double)) :*: (S1 (MetaSel (Just "ndPdfDenom") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double) :*: S1 (MetaSel (Just "ndCdfDenom") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double))))

# Constructors

Arguments

 :: Double Mean of distribution -> Double Standard deviation of distribution -> NormalDistribution

Create normal distribution from parameters.

IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.

Arguments

 :: Double Mean of distribution -> Double Standard deviation of distribution -> Maybe NormalDistribution

Create normal distribution from parameters.

IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.

Standard normal distribution with mean equal to 0 and variance equal to 1