Copyright | (c) 2011-2015 diagrams-lib team (see LICENSE) |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | diagrams-discuss@googlegroups.com |
Safe Haskell | None |
Language | Haskell2010 |
Diagrams.Prelude
Description
A module to re-export most of the functionality of the diagrams core and standard library.
Synopsis
- module Diagrams
- module Data.Default.Class
- alphaChannel :: AlphaColour a -> a
- blend :: (Num a, AffineSpace f) => a -> f a -> f a -> f a
- withOpacity :: Num a => Colour a -> a -> AlphaColour a
- dissolve :: Num a => a -> AlphaColour a -> AlphaColour a
- opaque :: Num a => Colour a -> AlphaColour a
- alphaColourConvert :: (Fractional b, Real a) => AlphaColour a -> AlphaColour b
- transparent :: Num a => AlphaColour a
- black :: Num a => Colour a
- colourConvert :: (Fractional b, Real a) => Colour a -> Colour b
- data Colour a
- data AlphaColour a
- class ColourOps (f :: Type -> Type) where
- yellowgreen :: (Ord a, Floating a) => Colour a
- yellow :: (Ord a, Floating a) => Colour a
- whitesmoke :: (Ord a, Floating a) => Colour a
- white :: (Ord a, Floating a) => Colour a
- wheat :: (Ord a, Floating a) => Colour a
- violet :: (Ord a, Floating a) => Colour a
- turquoise :: (Ord a, Floating a) => Colour a
- tomato :: (Ord a, Floating a) => Colour a
- thistle :: (Ord a, Floating a) => Colour a
- teal :: (Ord a, Floating a) => Colour a
- steelblue :: (Ord a, Floating a) => Colour a
- springgreen :: (Ord a, Floating a) => Colour a
- snow :: (Ord a, Floating a) => Colour a
- slategrey :: (Ord a, Floating a) => Colour a
- slategray :: (Ord a, Floating a) => Colour a
- slateblue :: (Ord a, Floating a) => Colour a
- skyblue :: (Ord a, Floating a) => Colour a
- silver :: (Ord a, Floating a) => Colour a
- sienna :: (Ord a, Floating a) => Colour a
- seashell :: (Ord a, Floating a) => Colour a
- seagreen :: (Ord a, Floating a) => Colour a
- sandybrown :: (Ord a, Floating a) => Colour a
- salmon :: (Ord a, Floating a) => Colour a
- saddlebrown :: (Ord a, Floating a) => Colour a
- royalblue :: (Ord a, Floating a) => Colour a
- rosybrown :: (Ord a, Floating a) => Colour a
- red :: (Ord a, Floating a) => Colour a
- purple :: (Ord a, Floating a) => Colour a
- powderblue :: (Ord a, Floating a) => Colour a
- plum :: (Ord a, Floating a) => Colour a
- pink :: (Ord a, Floating a) => Colour a
- peru :: (Ord a, Floating a) => Colour a
- peachpuff :: (Ord a, Floating a) => Colour a
- papayawhip :: (Ord a, Floating a) => Colour a
- palevioletred :: (Ord a, Floating a) => Colour a
- paleturquoise :: (Ord a, Floating a) => Colour a
- palegreen :: (Ord a, Floating a) => Colour a
- palegoldenrod :: (Ord a, Floating a) => Colour a
- orchid :: (Ord a, Floating a) => Colour a
- orangered :: (Ord a, Floating a) => Colour a
- orange :: (Ord a, Floating a) => Colour a
- olivedrab :: (Ord a, Floating a) => Colour a
- olive :: (Ord a, Floating a) => Colour a
- oldlace :: (Ord a, Floating a) => Colour a
- navy :: (Ord a, Floating a) => Colour a
- navajowhite :: (Ord a, Floating a) => Colour a
- moccasin :: (Ord a, Floating a) => Colour a
- mistyrose :: (Ord a, Floating a) => Colour a
- mintcream :: (Ord a, Floating a) => Colour a
- midnightblue :: (Ord a, Floating a) => Colour a
- mediumvioletred :: (Ord a, Floating a) => Colour a
- mediumturquoise :: (Ord a, Floating a) => Colour a
- mediumspringgreen :: (Ord a, Floating a) => Colour a
- mediumslateblue :: (Ord a, Floating a) => Colour a
- mediumseagreen :: (Ord a, Floating a) => Colour a
- mediumpurple :: (Ord a, Floating a) => Colour a
- mediumorchid :: (Ord a, Floating a) => Colour a
- mediumblue :: (Ord a, Floating a) => Colour a
- mediumaquamarine :: (Ord a, Floating a) => Colour a
- maroon :: (Ord a, Floating a) => Colour a
- magenta :: (Ord a, Floating a) => Colour a
- linen :: (Ord a, Floating a) => Colour a
- limegreen :: (Ord a, Floating a) => Colour a
- lime :: (Ord a, Floating a) => Colour a
- lightyellow :: (Ord a, Floating a) => Colour a
- lightsteelblue :: (Ord a, Floating a) => Colour a
- lightslategrey :: (Ord a, Floating a) => Colour a
- lightslategray :: (Ord a, Floating a) => Colour a
- lightskyblue :: (Ord a, Floating a) => Colour a
- lightseagreen :: (Ord a, Floating a) => Colour a
- lightsalmon :: (Ord a, Floating a) => Colour a
- lightpink :: (Ord a, Floating a) => Colour a
- lightgrey :: (Ord a, Floating a) => Colour a
- lightgreen :: (Ord a, Floating a) => Colour a
- lightgray :: (Ord a, Floating a) => Colour a
- lightgoldenrodyellow :: (Ord a, Floating a) => Colour a
- lightcyan :: (Ord a, Floating a) => Colour a
- lightcoral :: (Ord a, Floating a) => Colour a
- lightblue :: (Ord a, Floating a) => Colour a
- lemonchiffon :: (Ord a, Floating a) => Colour a
- lawngreen :: (Ord a, Floating a) => Colour a
- lavenderblush :: (Ord a, Floating a) => Colour a
- lavender :: (Ord a, Floating a) => Colour a
- khaki :: (Ord a, Floating a) => Colour a
- ivory :: (Ord a, Floating a) => Colour a
- indigo :: (Ord a, Floating a) => Colour a
- indianred :: (Ord a, Floating a) => Colour a
- hotpink :: (Ord a, Floating a) => Colour a
- honeydew :: (Ord a, Floating a) => Colour a
- greenyellow :: (Ord a, Floating a) => Colour a
- green :: (Ord a, Floating a) => Colour a
- grey :: (Ord a, Floating a) => Colour a
- gray :: (Ord a, Floating a) => Colour a
- goldenrod :: (Ord a, Floating a) => Colour a
- gold :: (Ord a, Floating a) => Colour a
- ghostwhite :: (Ord a, Floating a) => Colour a
- gainsboro :: (Ord a, Floating a) => Colour a
- fuchsia :: (Ord a, Floating a) => Colour a
- forestgreen :: (Ord a, Floating a) => Colour a
- floralwhite :: (Ord a, Floating a) => Colour a
- firebrick :: (Ord a, Floating a) => Colour a
- dodgerblue :: (Ord a, Floating a) => Colour a
- dimgrey :: (Ord a, Floating a) => Colour a
- dimgray :: (Ord a, Floating a) => Colour a
- deepskyblue :: (Ord a, Floating a) => Colour a
- deeppink :: (Ord a, Floating a) => Colour a
- darkviolet :: (Ord a, Floating a) => Colour a
- darkturquoise :: (Ord a, Floating a) => Colour a
- darkslategrey :: (Ord a, Floating a) => Colour a
- darkslategray :: (Ord a, Floating a) => Colour a
- darkslateblue :: (Ord a, Floating a) => Colour a
- darkseagreen :: (Ord a, Floating a) => Colour a
- darksalmon :: (Ord a, Floating a) => Colour a
- darkred :: (Ord a, Floating a) => Colour a
- darkorchid :: (Ord a, Floating a) => Colour a
- darkorange :: (Ord a, Floating a) => Colour a
- darkolivegreen :: (Ord a, Floating a) => Colour a
- darkmagenta :: (Ord a, Floating a) => Colour a
- darkkhaki :: (Ord a, Floating a) => Colour a
- darkgrey :: (Ord a, Floating a) => Colour a
- darkgreen :: (Ord a, Floating a) => Colour a
- darkgray :: (Ord a, Floating a) => Colour a
- darkgoldenrod :: (Ord a, Floating a) => Colour a
- darkcyan :: (Ord a, Floating a) => Colour a
- darkblue :: (Ord a, Floating a) => Colour a
- cyan :: (Ord a, Floating a) => Colour a
- crimson :: (Ord a, Floating a) => Colour a
- cornsilk :: (Ord a, Floating a) => Colour a
- cornflowerblue :: (Ord a, Floating a) => Colour a
- coral :: (Ord a, Floating a) => Colour a
- chocolate :: (Ord a, Floating a) => Colour a
- chartreuse :: (Ord a, Floating a) => Colour a
- cadetblue :: (Ord a, Floating a) => Colour a
- burlywood :: (Ord a, Floating a) => Colour a
- brown :: (Ord a, Floating a) => Colour a
- blueviolet :: (Ord a, Floating a) => Colour a
- blue :: (Ord a, Floating a) => Colour a
- blanchedalmond :: (Ord a, Floating a) => Colour a
- bisque :: (Ord a, Floating a) => Colour a
- beige :: (Ord a, Floating a) => Colour a
- azure :: (Ord a, Floating a) => Colour a
- aquamarine :: (Ord a, Floating a) => Colour a
- aqua :: (Ord a, Floating a) => Colour a
- antiquewhite :: (Ord a, Floating a) => Colour a
- aliceblue :: (Ord a, Floating a) => Colour a
- readColourName :: (Monad m, Ord a, Floating a) => String -> m (Colour a)
- black :: Num a => Colour a
- module Data.Colour.SRGB
- module Data.Semigroup
- module Linear.Vector
- module Linear.Affine
- module Linear.Metric
- module Data.Active
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- class Contravariant (f :: Type -> Type) where
- class Bifunctor (p :: Type -> Type -> Type) where
- bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
- newtype Identity a = Identity {
- runIdentity :: a
- newtype Const a (b :: k) :: forall k. Type -> k -> Type = Const {
- getConst :: a
- (&) :: a -> (a -> b) -> b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- class Profunctor (p :: Type -> Type -> Type) where
- defaultFieldRules :: LensRules
- makeFieldsNoPrefix :: Name -> DecsQ
- makeFields :: Name -> DecsQ
- abbreviatedNamer :: FieldNamer
- abbreviatedFields :: LensRules
- classUnderscoreNoPrefixNamer :: FieldNamer
- classUnderscoreNoPrefixFields :: LensRules
- camelCaseNamer :: FieldNamer
- camelCaseFields :: LensRules
- underscoreNamer :: FieldNamer
- underscoreFields :: LensRules
- makeWrapped :: Name -> DecsQ
- declareLensesWith :: LensRules -> DecsQ -> DecsQ
- declareFields :: DecsQ -> DecsQ
- declareWrapped :: DecsQ -> DecsQ
- declarePrisms :: DecsQ -> DecsQ
- declareClassyFor :: [(String, (String, String))] -> [(String, String)] -> DecsQ -> DecsQ
- declareClassy :: DecsQ -> DecsQ
- declareLensesFor :: [(String, String)] -> DecsQ -> DecsQ
- declareLenses :: DecsQ -> DecsQ
- makeLensesWith :: LensRules -> Name -> DecsQ
- makeClassyFor :: String -> String -> [(String, String)] -> Name -> DecsQ
- makeLensesFor :: [(String, String)] -> Name -> DecsQ
- makeClassy_ :: Name -> DecsQ
- makeClassy :: Name -> DecsQ
- makeLenses :: Name -> DecsQ
- classyRules_ :: LensRules
- classyRules :: LensRules
- mappingNamer :: (String -> [String]) -> FieldNamer
- lookingupNamer :: [(String, String)] -> FieldNamer
- lensRulesFor :: [(String, String)] -> LensRules
- underscoreNoPrefixNamer :: FieldNamer
- lensRules :: LensRules
- lensClass :: Lens' LensRules ClassyNamer
- lensField :: Lens' LensRules FieldNamer
- createClass :: Lens' LensRules Bool
- generateLazyPatterns :: Lens' LensRules Bool
- generateUpdateableOptics :: Lens' LensRules Bool
- generateSignatures :: Lens' LensRules Bool
- simpleLenses :: Lens' LensRules Bool
- data LensRules
- type FieldNamer = Name -> [Name] -> Name -> [DefName]
- data DefName
- type ClassyNamer = Name -> Maybe (Name, Name)
- makeClassyPrisms :: Name -> DecsQ
- makePrisms :: Name -> DecsQ
- iat :: At m => Index m -> IndexedLens' (Index m) m (Maybe (IxValue m))
- sans :: At m => Index m -> m -> m
- ixAt :: At m => Index m -> Traversal' m (IxValue m)
- iix :: Ixed m => Index m -> IndexedTraversal' (Index m) m (IxValue m)
- icontains :: Contains m => Index m -> IndexedLens' (Index m) m Bool
- type family Index s :: Type
- class Contains m
- type family IxValue m :: Type
- class Ixed m where
- ix :: Index m -> Traversal' m (IxValue m)
- class Ixed m => At m
- class Each s t a b | s -> a, t -> b, s b -> t, t a -> s where
- gplate :: (Generic a, GPlated a (Rep a)) => Traversal' a a
- parts :: Plated a => Lens' a [a]
- composOpFold :: Plated a => b -> (b -> b -> b) -> (a -> b) -> a -> b
- para :: Plated a => (a -> [r] -> r) -> a -> r
- paraOf :: Getting (Endo [a]) a a -> (a -> [r] -> r) -> a -> r
- holesOnOf :: Conjoined p => LensLike (Bazaar p r r) s t a b -> Over p (Bazaar p r r) a b r r -> s -> [Pretext p r r t]
- holesOn :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- holes :: Plated a => a -> [Pretext ((->) :: Type -> Type -> Type) a a a]
- contextsOnOf :: ATraversal s t a a -> ATraversal' a a -> s -> [Context a a t]
- contextsOn :: Plated a => ATraversal s t a a -> s -> [Context a a t]
- contextsOf :: ATraversal' a a -> a -> [Context a a a]
- contexts :: Plated a => a -> [Context a a a]
- transformMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m b) -> s -> m t
- transformMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m b) -> a -> m b
- transformMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m a) -> s -> m t
- transformM :: (Monad m, Plated a) => (a -> m a) -> a -> m a
- transformOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> b) -> s -> t
- transformOf :: ASetter a b a b -> (b -> b) -> a -> b
- transformOn :: Plated a => ASetter s t a a -> (a -> a) -> s -> t
- cosmosOnOf :: (Applicative f, Contravariant f) => LensLike' f s a -> LensLike' f a a -> LensLike' f s a
- cosmosOn :: (Applicative f, Contravariant f, Plated a) => LensLike' f s a -> LensLike' f s a
- cosmosOf :: (Applicative f, Contravariant f) => LensLike' f a a -> LensLike' f a a
- cosmos :: Plated a => Fold a a
- universeOnOf :: Getting [a] s a -> Getting [a] a a -> s -> [a]
- universeOn :: Plated a => Getting [a] s a -> s -> [a]
- universeOf :: Getting [a] a a -> a -> [a]
- universe :: Plated a => a -> [a]
- rewriteMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> s -> m t
- rewriteMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m (Maybe a)) -> s -> m t
- rewriteMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> a -> m b
- rewriteM :: (Monad m, Plated a) => (a -> m (Maybe a)) -> a -> m a
- rewriteOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> Maybe a) -> s -> t
- rewriteOn :: Plated a => ASetter s t a a -> (a -> Maybe a) -> s -> t
- rewriteOf :: ASetter a b a b -> (b -> Maybe a) -> a -> b
- rewrite :: Plated a => (a -> Maybe a) -> a -> a
- deep :: (Conjoined p, Applicative f, Plated s) => Traversing p f s s a b -> Over p f s s a b
- class Plated a where
- plate :: Traversal' a a
- class GPlated a (g :: Type -> Type)
- type family Zoomed (m :: Type -> Type) :: Type -> Type -> Type
- type family Magnified (m :: Type -> Type) :: Type -> Type -> Type
- class (MonadState s m, MonadState t n) => Zoom (m :: Type -> Type) (n :: Type -> Type) s t | m -> s, n -> t, m t -> n, n s -> m where
- class (Magnified m ~ Magnified n, MonadReader b m, MonadReader a n) => Magnify (m :: Type -> Type) (n :: Type -> Type) b a | m -> b, n -> a, m a -> n, n b -> m where
- alaf :: (Functor f, Functor g, Rewrapping s t) => (Unwrapped s -> s) -> (f t -> g s) -> f (Unwrapped t) -> g (Unwrapped s)
- ala :: (Functor f, Rewrapping s t) => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> f s) -> f (Unwrapped s)
- _Unwrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso (Unwrapped t) (Unwrapped s) t s
- _Wrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso s t (Unwrapped s) (Unwrapped t)
- _Unwrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' (Unwrapped s) s
- _Wrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' s (Unwrapped s)
- op :: Wrapped s => (Unwrapped s -> s) -> s -> Unwrapped s
- _Unwrapped :: Rewrapping s t => Iso (Unwrapped t) (Unwrapped s) t s
- _Wrapped :: Rewrapping s t => Iso s t (Unwrapped s) (Unwrapped t)
- _Unwrapped' :: Wrapped s => Iso' (Unwrapped s) s
- _GWrapped' :: (Generic s, D1 d (C1 c (S1 s' (Rec0 a))) ~ Rep s, Unwrapped s ~ GUnwrapped (Rep s)) => Iso' s (Unwrapped s)
- pattern Wrapped :: forall s. Rewrapped s s => Unwrapped s -> s
- pattern Unwrapped :: forall t. Rewrapped t t => t -> Unwrapped t
- class Wrapped s where
- class Wrapped s => Rewrapped s t
- class (Rewrapped s t, Rewrapped t s) => Rewrapping s t
- unsnoc :: Snoc s s a a => s -> Maybe (s, a)
- snoc :: Snoc s s a a => s -> a -> s
- (|>) :: Snoc s s a a => s -> a -> s
- _last :: Snoc s s a a => Traversal' s a
- _init :: Snoc s s a a => Traversal' s s
- _tail :: Cons s s a a => Traversal' s s
- _head :: Cons s s a a => Traversal' s a
- uncons :: Cons s s a a => s -> Maybe (a, s)
- cons :: Cons s s a a => a -> s -> s
- (<|) :: Cons s s a a => a -> s -> s
- pattern (:<) :: forall b a. Cons b b a a => a -> b -> b
- pattern (:>) :: forall a b. Snoc a a b b => a -> b -> a
- class Cons s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Snoc s t a b | s -> a, t -> b, s b -> t, t a -> s where
- pattern Empty :: forall s. AsEmpty s => s
- class AsEmpty a where
- coerced :: (Coercible s a, Coercible t b) => Iso s t a b
- seconding :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b)
- firsting :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y)
- bimapping :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b')
- rmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b)
- lmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y)
- dimapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b')
- contramapping :: Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t)
- imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)
- magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c)
- involuted :: (a -> a) -> Iso' a a
- reversed :: Reversing a => Iso' a a
- lazy :: Strict lazy strict => Iso' strict lazy
- flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
- uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
- curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
- anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
- non' :: APrism' a () -> Iso' (Maybe a) a
- non :: Eq a => a -> Iso' (Maybe a) a
- mapping :: (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b)
- enum :: Enum a => Iso' Int a
- under :: AnIso s t a b -> (t -> s) -> b -> a
- auf :: Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t
- au :: Functor f => AnIso s t a b -> ((b -> t) -> f s) -> f a
- cloneIso :: AnIso s t a b -> Iso s t a b
- withIso :: AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
- from :: AnIso s t a b -> Iso b a t s
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- pattern Strict :: forall s t. Strict s t => t -> s
- pattern Lazy :: forall t s. Strict t s => t -> s
- pattern Swapped :: forall (p :: Type -> Type -> Type) c d. Swapped p => p d c -> p c d
- pattern Reversed :: forall t. Reversing t => t -> t
- pattern List :: forall l. IsList l => [Item l] -> l
- type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t)
- type AnIso' s a = AnIso s s a a
- class Bifunctor p => Swapped (p :: Type -> Type -> Type) where
- class Strict lazy strict | lazy -> strict, strict -> lazy where
- simple :: Equality' a a
- simply :: (Optic' p f s a -> r) -> Optic' p f s a -> r
- fromEq :: AnEquality s t a b -> Equality b a t s
- mapEq :: AnEquality s t a b -> f s -> f a
- substEq :: AnEquality s t a b -> ((s ~ a) -> (t ~ b) -> r) -> r
- runEq :: AnEquality s t a b -> Identical s t a b
- data Identical (a :: k) (b :: k1) (s :: k) (t :: k1) :: forall k k1. k -> k1 -> k -> k1 -> Type where
- type AnEquality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = Identical a (Proxy b) a (Proxy b) -> Identical a (Proxy b) s (Proxy t)
- type AnEquality' (s :: k2) (a :: k2) = AnEquality s s a a
- itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t
- itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b)
- ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r
- ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r
- imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b)
- imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b)
- ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b)
- itoList :: FoldableWithIndex i f => f a -> [(i, a)]
- ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b
- ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b
- ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a)
- iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b]
- iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m ()
- imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m ()
- ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f ()
- itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f ()
- inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a
- icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r
- reindexed :: Indexable j p => (i -> j) -> (Indexed i a b -> r) -> p a b -> r
- selfIndex :: Indexable a p => p a fb -> a -> fb
- (<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r
- class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where
- imap :: (i -> a -> b) -> f a -> f b
- imapped :: IndexedSetter i (f a) (f b) a b
- class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where
- class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where
- itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b)
- itraversed :: IndexedTraversal i (t a) (t b) a b
- newtype ReifiedLens s t a b = Lens {}
- type ReifiedLens' s a = ReifiedLens s s a a
- newtype ReifiedIndexedLens i s t a b = IndexedLens {
- runIndexedLens :: IndexedLens i s t a b
- type ReifiedIndexedLens' i s a = ReifiedIndexedLens i s s a a
- newtype ReifiedIndexedTraversal i s t a b = IndexedTraversal {
- runIndexedTraversal :: IndexedTraversal i s t a b
- type ReifiedIndexedTraversal' i s a = ReifiedIndexedTraversal i s s a a
- newtype ReifiedTraversal s t a b = Traversal {
- runTraversal :: Traversal s t a b
- type ReifiedTraversal' s a = ReifiedTraversal s s a a
- newtype ReifiedGetter s a = Getter {}
- newtype ReifiedIndexedGetter i s a = IndexedGetter {
- runIndexedGetter :: IndexedGetter i s a
- newtype ReifiedFold s a = Fold {}
- newtype ReifiedIndexedFold i s a = IndexedFold {
- runIndexedFold :: IndexedFold i s a
- newtype ReifiedSetter s t a b = Setter {}
- type ReifiedSetter' s a = ReifiedSetter s s a a
- newtype ReifiedIndexedSetter i s t a b = IndexedSetter {
- runIndexedSetter :: IndexedSetter i s t a b
- type ReifiedIndexedSetter' i s a = ReifiedIndexedSetter i s s a a
- newtype ReifiedIso s t a b = Iso {}
- type ReifiedIso' s a = ReifiedIso s s a a
- newtype ReifiedPrism s t a b = Prism {}
- type ReifiedPrism' s a = ReifiedPrism s s a a
- ilevels :: Applicative f => Traversing (Indexed i) f s t a b -> IndexedLensLike Int f s t (Level i a) (Level j b)
- sequenceByOf :: Traversal s t (f b) b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> s -> f t
- traverseByOf :: Traversal s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> s -> f t
- confusing :: Applicative f => LensLike (Curried (Yoneda f) (Yoneda f)) s t a b -> LensLike f s t a b
- deepOf :: (Conjoined p, Applicative f) => LensLike f s t s t -> Traversing p f s t a b -> Over p f s t a b
- failing :: (Conjoined p, Applicative f) => Traversing p f s t a b -> Over p f s t a b -> Over p f s t a b
- ifailover :: Alternative m => Over (Indexed i) ((,) Any) s t a b -> (i -> a -> b) -> s -> m t
- failover :: Alternative m => LensLike ((,) Any) s t a b -> (a -> b) -> s -> m t
- elements :: Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a
- elementsOf :: Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a
- element :: Traversable t => Int -> IndexedTraversal' Int (t a) a
- elementOf :: Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a
- ignored :: Applicative f => pafb -> s -> f s
- traversed64 :: Traversable f => IndexedTraversal Int64 (f a) (f b) a b
- traversed1 :: Traversable1 f => IndexedTraversal1 Int (f a) (f b) a b
- traversed :: Traversable f => IndexedTraversal Int (f a) (f b) a b
- imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t
- imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t
- iforOf :: (Indexed i a (f b) -> s -> f t) -> s -> (i -> a -> f b) -> f t
- itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t
- cloneIndexedTraversal1 :: AnIndexedTraversal1 i s t a b -> IndexedTraversal1 i s t a b
- cloneIndexPreservingTraversal1 :: ATraversal1 s t a b -> IndexPreservingTraversal1 s t a b
- cloneTraversal1 :: ATraversal1 s t a b -> Traversal1 s t a b
- cloneIndexedTraversal :: AnIndexedTraversal i s t a b -> IndexedTraversal i s t a b
- cloneIndexPreservingTraversal :: ATraversal s t a b -> IndexPreservingTraversal s t a b
- cloneTraversal :: ATraversal s t a b -> Traversal s t a b
- dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a
- taking :: (Conjoined p, Applicative f) => Int -> Traversing p f s t a a -> Over p f s t a a
- both1 :: Bitraversable1 r => Traversal1 (r a a) (r b b) a b
- both :: Bitraversable r => Traversal (r a a) (r b b) a b
- holesOf :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- unsafeSingular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a b -> Over p f s t a b
- iunsafePartsOf' :: Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b]
- unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b]
- iunsafePartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b]
- unsafePartsOf :: Functor f => Traversing ((->) :: Type -> Type -> Type) f s t a b -> LensLike f s t [a] [b]
- ipartsOf' :: (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a]
- partsOf' :: ATraversal s t a a -> Lens s t [a] [a]
- ipartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a]
- partsOf :: Functor f => Traversing ((->) :: Type -> Type -> Type) f s t a a -> LensLike f s t [a] [a]
- iloci :: IndexedTraversal i (Bazaar (Indexed i) a c s) (Bazaar (Indexed i) b c s) a b
- loci :: Traversal (Bazaar ((->) :: Type -> Type -> Type) a c s) (Bazaar ((->) :: Type -> Type -> Type) b c s) a b
- scanl1Of :: LensLike (State (Maybe a)) s t a a -> (a -> a -> a) -> s -> t
- scanr1Of :: LensLike (Backwards (State (Maybe a))) s t a a -> (a -> a -> a) -> s -> t
- mapAccumLOf :: LensLike (State acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- mapAccumROf :: LensLike (Backwards (State acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- transposeOf :: LensLike ZipList s t [a] a -> s -> [t]
- sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t
- forMOf :: LensLike (WrappedMonad m) s t a b -> s -> (a -> m b) -> m t
- mapMOf :: LensLike (WrappedMonad m) s t a b -> (a -> m b) -> s -> m t
- sequenceAOf :: LensLike f s t (f b) b -> s -> f t
- forOf :: LensLike f s t a b -> s -> (a -> f b) -> f t
- traverseOf :: LensLike f s t a b -> (a -> f b) -> s -> f t
- type ATraversal s t a b = LensLike (Bazaar ((->) :: Type -> Type -> Type) a b) s t a b
- type ATraversal' s a = ATraversal s s a a
- type ATraversal1 s t a b = LensLike (Bazaar1 ((->) :: Type -> Type -> Type) a b) s t a b
- type ATraversal1' s a = ATraversal1 s s a a
- type AnIndexedTraversal i s t a b = Over (Indexed i) (Bazaar (Indexed i) a b) s t a b
- type AnIndexedTraversal1 i s t a b = Over (Indexed i) (Bazaar1 (Indexed i) a b) s t a b
- type AnIndexedTraversal' i s a = AnIndexedTraversal i s s a a
- type AnIndexedTraversal1' i s a = AnIndexedTraversal1 i s s a a
- type Traversing (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT p f a b) s t a b
- type Traversing1 (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT1 p f a b) s t a b
- type Traversing' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing p f s s a a
- type Traversing1' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing1 p f s s a a
- class Ord k => TraverseMin k (m :: Type -> Type) | m -> k where
- traverseMin :: IndexedTraversal' k (m v) v
- class Ord k => TraverseMax k (m :: Type -> Type) | m -> k where
- traverseMax :: IndexedTraversal' k (m v) v
- foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
- foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a
- idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s)) :: Type -> Type) s a -> Optical' p q f s a
- ifiltered :: (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a
- findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i]
- findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i
- elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i]
- elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i
- (^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a)
- (^@?) :: s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a)
- (^@..) :: s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)]
- itoListOf :: IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)]
- ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r
- ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r
- ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a)
- ifindOf :: IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a
- iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r]
- iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m ()
- imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m ()
- iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f ()
- itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f ()
- inoneOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- iallOf :: IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool
- ianyOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m
- ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a)
- ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- previews :: MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a)
- ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a))
- pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a)
- hasn't :: Getting All s a -> s -> Bool
- has :: Getting Any s a -> s -> Bool
- foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r
- foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r
- foldl1Of' :: HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a
- foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r
- foldl1Of :: HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldr1Of :: HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a
- lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v
- findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a)
- findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a
- minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- minimum1Of :: Ord a => Getting (Min a) s a -> s -> a
- minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- maximum1Of :: Ord a => Getting (Max a) s a -> s -> a
- maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- notNullOf :: Getting Any s a -> s -> Bool
- nullOf :: Getting All s a -> s -> Bool
- last1Of :: Getting (Last a) s a -> s -> a
- lastOf :: Getting (Rightmost a) s a -> s -> Maybe a
- first1Of :: Getting (First a) s a -> s -> a
- firstOf :: Getting (Leftmost a) s a -> s -> Maybe a
- (^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a
- (^?) :: s -> Getting (First a) s a -> Maybe a
- lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int
- concatOf :: Getting [r] s [r] -> s -> [r]
- concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r]
- notElemOf :: Eq a => Getting All s a -> a -> s -> Bool
- elemOf :: Eq a => Getting Any s a -> a -> s -> Bool
- msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a
- asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a
- sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m ()
- forMOf_ :: Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m ()
- mapMOf_ :: Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m ()
- sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f ()
- for1Of_ :: Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f ()
- traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f ()
- sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f ()
- forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f ()
- traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f ()
- sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- allOf :: Getting All s a -> (a -> Bool) -> s -> Bool
- anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- orOf :: Getting Any s Bool -> s -> Bool
- andOf :: Getting All s Bool -> s -> Bool
- (^..) :: s -> Getting (Endo [a]) s a -> [a]
- toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a
- toListOf :: Getting (Endo [a]) s a -> s -> [a]
- foldlOf :: Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r
- foldOf :: Getting a s a -> s -> a
- foldMapOf :: Getting r s a -> (a -> r) -> s -> r
- lined :: Applicative f => IndexedLensLike' Int f String String
- worded :: Applicative f => IndexedLensLike' Int f String String
- droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a
- filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a
- iterated :: Apply f => (a -> a) -> LensLike' f a a
- unfolded :: (b -> Maybe (a, b)) -> Fold b a
- cycled :: Apply f => LensLike f s t a b -> LensLike f s t a b
- replicated :: Int -> Fold a a
- repeated :: Apply f => LensLike' f a a
- folded64 :: Foldable f => IndexedFold Int64 (f a) a
- folded :: Foldable f => IndexedFold Int (f a) a
- ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b
- foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b
- ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b
- folding :: Foldable f => (s -> f a) -> Fold s a
- _Show :: (Read a, Show a) => Prism' String a
- nearly :: a -> (a -> Bool) -> Prism' a ()
- only :: Eq a => a -> Prism' a ()
- _Void :: Prism s s a Void
- _Nothing :: Prism' (Maybe a) ()
- _Just :: Prism (Maybe a) (Maybe b) a b
- _Right :: Prism (Either c a) (Either c b) a b
- _Left :: Prism (Either a c) (Either b c) a b
- matching :: APrism s t a b -> s -> Either t a
- isn't :: APrism s t a b -> s -> Bool
- below :: Traversable f => APrism' s a -> Prism' (f s) (f a)
- aside :: APrism s t a b -> Prism (e, s) (e, t) (e, a) (e, b)
- without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d)
- prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b
- prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
- clonePrism :: APrism s t a b -> Prism s t a b
- withPrism :: APrism s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r
- type APrism s t a b = Market a b a (Identity b) -> Market a b s (Identity t)
- type APrism' s a = APrism s s a a
- reuses :: MonadState b m => AReview t b -> (t -> r) -> m r
- reuse :: MonadState b m => AReview t b -> m t
- reviews :: MonadReader b m => AReview t b -> (t -> r) -> m r
- review :: MonadReader b m => AReview t b -> m t
- re :: AReview t b -> Getter b t
- un :: (Profunctor p, Bifunctor p, Functor f) => Getting a s a -> Optic' p f a s
- unto :: (Profunctor p, Bifunctor p, Functor f) => (b -> t) -> Optic p f s t a b
- getting :: (Profunctor p, Profunctor q, Functor f, Contravariant f) => Optical p q f s t a b -> Optical' p q f s a
- (^@.) :: s -> IndexedGetting i (i, a) s a -> (i, a)
- iuses :: MonadState s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- iuse :: MonadState s m => IndexedGetting i (i, a) s a -> m (i, a)
- iviews :: MonadReader s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- iview :: MonadReader s m => IndexedGetting i (i, a) s a -> m (i, a)
- ilistenings :: MonadWriter w m => IndexedGetting i v w u -> (i -> u -> v) -> m a -> m (a, v)
- listenings :: MonadWriter w m => Getting v w u -> (u -> v) -> m a -> m (a, v)
- ilistening :: MonadWriter w m => IndexedGetting i (i, u) w u -> m a -> m (a, (i, u))
- listening :: MonadWriter w m => Getting u w u -> m a -> m (a, u)
- uses :: MonadState s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- use :: MonadState s m => Getting a s a -> m a
- (^.) :: s -> Getting a s a -> a
- views :: MonadReader s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- view :: MonadReader s m => Getting a s a -> m a
- ilike :: (Indexable i p, Contravariant f, Functor f) => i -> a -> Over' p f s a
- like :: (Profunctor p, Contravariant f, Functor f) => a -> Optic' p f s a
- ito :: (Indexable i p, Contravariant f) => (s -> (i, a)) -> Over' p f s a
- to :: (Profunctor p, Contravariant f) => (s -> a) -> Optic' p f s a
- type Getting r s a = (a -> Const r a) -> s -> Const r s
- type IndexedGetting i m s a = Indexed i a (Const m a) -> s -> Const m s
- type Accessing (p :: Type -> Type -> Type) m s a = p a (Const m a) -> s -> Const m s
- _19' :: Field19 s t a b => Lens s t a b
- _18' :: Field18 s t a b => Lens s t a b
- _17' :: Field17 s t a b => Lens s t a b
- _16' :: Field16 s t a b => Lens s t a b
- _15' :: Field15 s t a b => Lens s t a b
- _14' :: Field14 s t a b => Lens s t a b
- _13' :: Field13 s t a b => Lens s t a b
- _12' :: Field12 s t a b => Lens s t a b
- _11' :: Field11 s t a b => Lens s t a b
- _10' :: Field10 s t a b => Lens s t a b
- _9' :: Field9 s t a b => Lens s t a b
- _8' :: Field8 s t a b => Lens s t a b
- _7' :: Field7 s t a b => Lens s t a b
- _6' :: Field6 s t a b => Lens s t a b
- _5' :: Field5 s t a b => Lens s t a b
- _4' :: Field4 s t a b => Lens s t a b
- _3' :: Field3 s t a b => Lens s t a b
- _2' :: Field2 s t a b => Lens s t a b
- _1' :: Field1 s t a b => Lens s t a b
- class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- fusing :: Functor f => LensLike (Yoneda f) s t a b -> LensLike f s t a b
- united :: Lens' a ()
- devoid :: Over p f Void Void a b
- (<#=) :: MonadState s m => ALens s s a b -> b -> m b
- (<#~) :: ALens s t a b -> b -> s -> (b, t)
- (#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r
- (<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b
- (<#%~) :: ALens s t a b -> (a -> b) -> s -> (b, t)
- (#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m ()
- (#=) :: MonadState s m => ALens s s a b -> b -> m ()
- (#%%~) :: Functor f => ALens s t a b -> (a -> f b) -> s -> f t
- (#%~) :: ALens s t a b -> (a -> b) -> s -> t
- (#~) :: ALens s t a b -> b -> s -> t
- storing :: ALens s t a b -> b -> s -> t
- (^#) :: s -> ALens s t a b -> a
- (<<%@=) :: MonadState s m => Over (Indexed i) ((,) a) s s a b -> (i -> a -> b) -> m a
- (<%@=) :: MonadState s m => Over (Indexed i) ((,) b) s s a b -> (i -> a -> b) -> m b
- (%%@=) :: MonadState s m => Over (Indexed i) ((,) r) s s a b -> (i -> a -> (r, b)) -> m r
- (%%@~) :: Over (Indexed i) f s t a b -> (i -> a -> f b) -> s -> f t
- (<<%@~) :: Over (Indexed i) ((,) a) s t a b -> (i -> a -> b) -> s -> (a, t)
- (<%@~) :: Over (Indexed i) ((,) b) s t a b -> (i -> a -> b) -> s -> (b, t)
- overA :: Arrow ar => LensLike (Context a b) s t a b -> ar a b -> ar s t
- (<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m r
- (<<>~) :: Monoid m => LensLike ((,) m) s t m m -> m -> s -> (m, t)
- (<<~) :: MonadState s m => ALens s s a b -> m b -> m b
- (<<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m r
- (<<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<?=) :: MonadState s m => LensLike ((,) a) s s a (Maybe b) -> b -> m a
- (<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a
- (<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a
- (<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<%=) :: MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b
- (<<<>~) :: Monoid r => LensLike' ((,) r) s r -> r -> s -> (r, s)
- (<<&&~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<||~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<**~) :: Floating a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<^^~) :: (Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<^~) :: (Num a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<//~) :: Fractional a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<*~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<-~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<+~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<?~) :: LensLike ((,) a) s t a (Maybe b) -> b -> s -> (a, t)
- (<<.~) :: LensLike ((,) a) s t a b -> b -> s -> (a, t)
- (<<%~) :: LensLike ((,) a) s t a b -> (a -> b) -> s -> (a, t)
- (<&&~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (<||~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (<**~) :: Floating a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<^^~) :: (Fractional a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<^~) :: (Num a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<//~) :: Fractional a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<*~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<-~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<+~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<%~) :: LensLike ((,) b) s t a b -> (a -> b) -> s -> (b, t)
- cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b
- cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a b
- cloneLens :: ALens s t a b -> Lens s t a b
- locus :: IndexedComonadStore p => Lens (p a c s) (p b c s) a b
- alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b')
- chosen :: IndexPreservingLens (Either a a) (Either b b) a b
- choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b
- (??) :: Functor f => f (a -> b) -> a -> f b
- (%%=) :: MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r
- (%%~) :: LensLike f s t a b -> (a -> f b) -> s -> f t
- (&~) :: s -> State s a -> s
- ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b
- iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b
- lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
- type ALens s t a b = LensLike (Pretext ((->) :: Type -> Type -> Type) a b) s t a b
- type ALens' s a = ALens s s a a
- type AnIndexedLens i s t a b = Optical (Indexed i) ((->) :: Type -> Type -> Type) (Pretext (Indexed i) a b) s t a b
- type AnIndexedLens' i s a = AnIndexedLens i s s a a
- imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- mapOf :: ASetter s t a b -> (a -> b) -> s -> t
- assignA :: Arrow p => ASetter s t a b -> p s b -> p s t
- (.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m ()
- imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- (%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b
- iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a
- censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a
- ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a
- passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a
- scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m ()
- (<>=) :: (MonadState s m, Monoid a) => ASetter' s a -> a -> m ()
- (<>~) :: Monoid a => ASetter s t a a -> a -> s -> t
- (<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b
- (<.=) :: MonadState s m => ASetter s s a b -> b -> m b
- (<~) :: MonadState s m => ASetter s s a b -> m b -> m ()
- (||=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m ()
- (^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m ()
- (^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()
- (//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m ()
- (*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m ()
- modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (.=) :: MonadState s m => ASetter s s a b -> b -> m ()
- assign :: MonadState s m => ASetter s s a b -> b -> m ()
- (&&~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (||~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (**~) :: Floating a => ASetter s t a a -> a -> s -> t
- (^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t
- (^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t
- (//~) :: Fractional a => ASetter s t a a -> a -> s -> t
- (-~) :: Num a => ASetter s t a a -> a -> s -> t
- (*~) :: Num a => ASetter s t a a -> a -> s -> t
- (+~) :: Num a => ASetter s t a a -> a -> s -> t
- (<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t)
- (<.~) :: ASetter s t a b -> b -> s -> (b, t)
- (?~) :: ASetter s t a (Maybe b) -> b -> s -> t
- (.~) :: ASetter s t a b -> b -> s -> t
- (%~) :: ASetter s t a b -> (a -> b) -> s -> t
- set' :: ASetter' s a -> a -> s -> s
- set :: ASetter s t a b -> b -> s -> t
- over :: ASetter s t a b -> (a -> b) -> s -> t
- cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b
- cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b
- cloneSetter :: ASetter s t a b -> Setter s t a b
- sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b
- setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b
- contramapped :: Contravariant f => Setter (f b) (f a) a b
- lifted :: Monad m => Setter (m a) (m b) a b
- mapped :: Functor f => Setter (f a) (f b) a b
- type ASetter s t a b = (a -> Identity b) -> s -> Identity t
- type ASetter' s a = ASetter s s a a
- type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t
- type AnIndexedSetter' i s a = AnIndexedSetter i s s a a
- type Setting (p :: Type -> Type -> Type) s t a b = p a (Identity b) -> s -> Identity t
- type Setting' (p :: Type -> Type -> Type) s a = Setting p s s a a
- type Lens s t a b = forall (f :: Type -> Type). Functor f => (a -> f b) -> s -> f t
- type Lens' s a = Lens s s a a
- type IndexedLens i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Functor f) => p a (f b) -> s -> f t
- type IndexedLens' i s a = IndexedLens i s s a a
- type IndexPreservingLens s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Functor f) => p a (f b) -> p s (f t)
- type IndexPreservingLens' s a = IndexPreservingLens s s a a
- type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t
- type Traversal' s a = Traversal s s a a
- type Traversal1 s t a b = forall (f :: Type -> Type). Apply f => (a -> f b) -> s -> f t
- type Traversal1' s a = Traversal1 s s a a
- type IndexedTraversal i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Applicative f) => p a (f b) -> s -> f t
- type IndexedTraversal' i s a = IndexedTraversal i s s a a
- type IndexedTraversal1 i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Apply f) => p a (f b) -> s -> f t
- type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a
- type IndexPreservingTraversal s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Applicative f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal' s a = IndexPreservingTraversal s s a a
- type IndexPreservingTraversal1 s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Apply f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal1' s a = IndexPreservingTraversal1 s s a a
- type Setter s t a b = forall (f :: Type -> Type). Settable f => (a -> f b) -> s -> f t
- type Setter' s a = Setter s s a a
- type IndexedSetter i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Settable f) => p a (f b) -> s -> f t
- type IndexedSetter' i s a = IndexedSetter i s s a a
- type IndexPreservingSetter s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Settable f) => p a (f b) -> p s (f t)
- type IndexPreservingSetter' s a = IndexPreservingSetter s s a a
- type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t)
- type Iso' s a = Iso s s a a
- type Review t b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Bifunctor p, Settable f) => Optic' p f t b
- type AReview t b = Optic' (Tagged :: Type -> Type -> Type) Identity t b
- type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t)
- type Prism' s a = Prism s s a a
- type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3). p a (f b) -> p s (f t)
- type Equality' (s :: k2) (a :: k2) = Equality s s a a
- type As (a :: k2) = Equality' a a
- type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s
- type IndexedGetter i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s
- type IndexPreservingGetter s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s)
- type Fold s a = forall (f :: Type -> Type). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s
- type IndexedFold i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s
- type IndexPreservingFold s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s)
- type Fold1 s a = forall (f :: Type -> Type). (Contravariant f, Apply f) => (a -> f a) -> s -> f s
- type IndexedFold1 i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s
- type IndexPreservingFold1 s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s)
- type Simple (f :: k -> k -> k1 -> k1 -> k2) (s :: k) (a :: k1) = f s s a a
- type Optic (p :: k1 -> k -> Type) (f :: k2 -> k) (s :: k1) (t :: k2) (a :: k1) (b :: k2) = p a (f b) -> p s (f t)
- type Optic' (p :: k1 -> k -> Type) (f :: k1 -> k) (s :: k1) (a :: k1) = Optic p f s s a a
- type Optical (p :: k2 -> k -> Type) (q :: k1 -> k -> Type) (f :: k3 -> k) (s :: k1) (t :: k3) (a :: k2) (b :: k3) = p a (f b) -> q s (f t)
- type Optical' (p :: k1 -> k -> Type) (q :: k1 -> k -> Type) (f :: k1 -> k) (s :: k1) (a :: k1) = Optical p q f s s a a
- type LensLike (f :: k -> Type) s (t :: k) a (b :: k) = (a -> f b) -> s -> f t
- type LensLike' (f :: Type -> Type) s a = LensLike f s s a a
- type IndexedLensLike i (f :: k -> Type) s (t :: k) a (b :: k) = forall (p :: Type -> Type -> Type). Indexable i p => p a (f b) -> s -> f t
- type IndexedLensLike' i (f :: Type -> Type) s a = IndexedLensLike i f s s a a
- type Over (p :: k -> Type -> Type) (f :: k1 -> Type) s (t :: k1) (a :: k) (b :: k1) = p a (f b) -> s -> f t
- type Over' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Over p f s s a a
- class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type)
- retagged :: (Profunctor p, Bifunctor p) => p a b -> p s b
- class (Profunctor p, Bifunctor p) => Reviewable (p :: Type -> Type -> Type)
- data Magma i t b a
- data Level i a
- class Reversing t where
- reversing :: t -> t
- newtype Bazaar (p :: Type -> Type -> Type) a b t = Bazaar {
- runBazaar :: forall (f :: Type -> Type). Applicative f => p a (f b) -> f t
- type Bazaar' (p :: Type -> Type -> Type) a = Bazaar p a a
- newtype Bazaar1 (p :: Type -> Type -> Type) a b t = Bazaar1 {
- runBazaar1 :: forall (f :: Type -> Type). Apply f => p a (f b) -> f t
- type Bazaar1' (p :: Type -> Type -> Type) a = Bazaar1 p a a
- data Context a b t = Context (b -> t) a
- type Context' a = Context a a
- asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s)
- withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t)
- indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t
- indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t
- class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p, Closed p) => Conjoined (p :: Type -> Type -> Type) where
- class Conjoined p => Indexable i (p :: Type -> Type -> Type)
- newtype Indexed i a b = Indexed {
- runIndexed :: i -> a -> b
- data Traversed a (f :: Type -> Type)
- data Sequenced a (m :: Type -> Type)
- data Leftmost a
- data Rightmost a
- class (Foldable1 t, Traversable t) => Traversable1 (t :: Type -> Type) where
- foldBy :: Foldable t => (a -> a -> a) -> a -> t a -> a
- foldMapBy :: Foldable t => (r -> r -> r) -> r -> (a -> r) -> t a -> r
- traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b)
- sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a)
- class Profunctor p => Choice (p :: Type -> Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- (*>) :: Applicative f => f a -> f b -> f b
- (<*) :: Applicative f => f a -> f b -> f a
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<$) :: Functor f => a -> f b -> f a
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
Diagrams library
Exports from this library for working with diagrams.
module Diagrams
Convenience re-exports from other packages
module Data.Default.Class
For representing and operating on colors.
alphaChannel :: AlphaColour a -> a #
Returns the opacity of an AlphaColour
.
blend :: (Num a, AffineSpace f) => a -> f a -> f a -> f a #
Compute the weighted average of two points. e.g.
blend 0.4 a b = 0.4*a + 0.6*b
The weight can be negative, or greater than 1.0; however, be aware that non-convex combinations may lead to out of gamut colours.
withOpacity :: Num a => Colour a -> a -> AlphaColour a #
Creates an AlphaColour
from a Colour
with a given opacity.
c `withOpacity` o == dissolve o (opaque c)
dissolve :: Num a => a -> AlphaColour a -> AlphaColour a #
Returns an AlphaColour
more transparent by a factor of o
.
opaque :: Num a => Colour a -> AlphaColour a #
Creates an opaque AlphaColour
from a Colour
.
alphaColourConvert :: (Fractional b, Real a) => AlphaColour a -> AlphaColour b #
Change the type used to represent the colour coordinates.
transparent :: Num a => AlphaColour a #
This AlphaColour
is entirely transparent and has no associated
colour channel.
colourConvert :: (Fractional b, Real a) => Colour a -> Colour b #
Change the type used to represent the colour coordinates.
This type represents the human preception of colour.
The a
parameter is a numeric type used internally for the
representation.
The Monoid
instance allows one to add colours, but beware that adding
colours can take you out of gamut. Consider using blend
whenever
possible.
Instances
AffineSpace Colour | |
Defined in Data.Colour.Internal | |
ColourOps Colour | |
Eq a => Eq (Colour a) | |
Num a => Semigroup (Colour a) | |
Num a => Monoid (Colour a) | |
a ~ Double => Color (Colour a) # | |
Defined in Diagrams.Attributes Methods toAlphaColour :: Colour a -> AlphaColour Double # fromAlphaColour :: AlphaColour Double -> Colour a # | |
Parseable (Colour Double) # | Parse |
data AlphaColour a #
This type represents a Colour
that may be semi-transparent.
The Monoid
instance allows you to composite colours.
x `mappend` y == x `over` y
To get the (pre-multiplied) colour channel of an AlphaColour
c
,
simply composite c
over black.
c `over` black
Instances
class ColourOps (f :: Type -> Type) where #
Methods
darken :: Num a => a -> f a -> f a #
darken s c
blends a colour with black without changing it's opacity.
For Colour
, darken s c = blend s c mempty
Instances
ColourOps Colour | |
ColourOps AlphaColour | |
Defined in Data.Colour.Internal Methods over :: Num a => AlphaColour a -> AlphaColour a -> AlphaColour a # darken :: Num a => a -> AlphaColour a -> AlphaColour a # |
A large list of color names.
yellowgreen :: (Ord a, Floating a) => Colour a #
whitesmoke :: (Ord a, Floating a) => Colour a #
springgreen :: (Ord a, Floating a) => Colour a #
sandybrown :: (Ord a, Floating a) => Colour a #
saddlebrown :: (Ord a, Floating a) => Colour a #
powderblue :: (Ord a, Floating a) => Colour a #
papayawhip :: (Ord a, Floating a) => Colour a #
palevioletred :: (Ord a, Floating a) => Colour a #
paleturquoise :: (Ord a, Floating a) => Colour a #
palegoldenrod :: (Ord a, Floating a) => Colour a #
navajowhite :: (Ord a, Floating a) => Colour a #
midnightblue :: (Ord a, Floating a) => Colour a #
mediumvioletred :: (Ord a, Floating a) => Colour a #
mediumturquoise :: (Ord a, Floating a) => Colour a #
mediumspringgreen :: (Ord a, Floating a) => Colour a #
mediumslateblue :: (Ord a, Floating a) => Colour a #
mediumseagreen :: (Ord a, Floating a) => Colour a #
mediumpurple :: (Ord a, Floating a) => Colour a #
mediumorchid :: (Ord a, Floating a) => Colour a #
mediumblue :: (Ord a, Floating a) => Colour a #
mediumaquamarine :: (Ord a, Floating a) => Colour a #
lightyellow :: (Ord a, Floating a) => Colour a #
lightsteelblue :: (Ord a, Floating a) => Colour a #
lightslategrey :: (Ord a, Floating a) => Colour a #
lightslategray :: (Ord a, Floating a) => Colour a #
lightskyblue :: (Ord a, Floating a) => Colour a #
lightseagreen :: (Ord a, Floating a) => Colour a #
lightsalmon :: (Ord a, Floating a) => Colour a #
lightgreen :: (Ord a, Floating a) => Colour a #
lightgoldenrodyellow :: (Ord a, Floating a) => Colour a #
lightcoral :: (Ord a, Floating a) => Colour a #
lemonchiffon :: (Ord a, Floating a) => Colour a #
lavenderblush :: (Ord a, Floating a) => Colour a #
greenyellow :: (Ord a, Floating a) => Colour a #
ghostwhite :: (Ord a, Floating a) => Colour a #
forestgreen :: (Ord a, Floating a) => Colour a #
floralwhite :: (Ord a, Floating a) => Colour a #
dodgerblue :: (Ord a, Floating a) => Colour a #
deepskyblue :: (Ord a, Floating a) => Colour a #
darkviolet :: (Ord a, Floating a) => Colour a #
darkturquoise :: (Ord a, Floating a) => Colour a #
darkslategrey :: (Ord a, Floating a) => Colour a #
darkslategray :: (Ord a, Floating a) => Colour a #
darkslateblue :: (Ord a, Floating a) => Colour a #
darkseagreen :: (Ord a, Floating a) => Colour a #
darksalmon :: (Ord a, Floating a) => Colour a #
darkorchid :: (Ord a, Floating a) => Colour a #
darkorange :: (Ord a, Floating a) => Colour a #
darkolivegreen :: (Ord a, Floating a) => Colour a #
darkmagenta :: (Ord a, Floating a) => Colour a #
darkgoldenrod :: (Ord a, Floating a) => Colour a #
cornflowerblue :: (Ord a, Floating a) => Colour a #
chartreuse :: (Ord a, Floating a) => Colour a #
blueviolet :: (Ord a, Floating a) => Colour a #
blanchedalmond :: (Ord a, Floating a) => Colour a #
aquamarine :: (Ord a, Floating a) => Colour a #
antiquewhite :: (Ord a, Floating a) => Colour a #
Specify your own colours.
module Data.Colour.SRGB
Semigroups and monoids show up all over the place, so things from Data.Semigroup and Data.Monoid often come in handy.
module Data.Semigroup
For computing with vectors.
module Linear.Vector
For computing with points and vectors.
module Linear.Affine
For computing with dot products and norm.
module Linear.Metric
For working with Active
(i.e. animated) things.
module Data.Active
Most of the lens package. The following functions are not exported from lens because they either conflict with diagrams or may conflict with other libraries:
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be traversed from left to right.
A definition of traverse
must satisfy the following laws:
- naturality
t .
for every applicative transformationtraverse
f =traverse
(t . f)t
- identity
traverse
Identity = Identity- composition
traverse
(Compose .fmap
g . f) = Compose .fmap
(traverse
g) .traverse
f
A definition of sequenceA
must satisfy the following laws:
- naturality
t .
for every applicative transformationsequenceA
=sequenceA
.fmap
tt
- identity
sequenceA
.fmap
Identity = Identity- composition
sequenceA
.fmap
Compose = Compose .fmap
sequenceA
.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative
operations, i.e.
and the identity functor Identity
and composition of functors Compose
are defined as
newtype Identity a = Identity a instance Functor Identity where fmap f (Identity x) = Identity (f x) instance Applicative Identity where pure x = Identity x Identity f <*> Identity x = Identity (f x) newtype Compose f g a = Compose (f (g a)) instance (Functor f, Functor g) => Functor (Compose f g) where fmap f (Compose x) = Compose (fmap (fmap f) x) instance (Applicative f, Applicative g) => Applicative (Compose f g) where pure x = Compose (pure (pure x)) Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
(The naturality law is implied by parametricity.)
Instances are similar to Functor
, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functor
instance,fmap
should be equivalent to traversal with the identity applicative functor (fmapDefault
). - In the
Foldable
instance,foldMap
should be equivalent to traversal with a constant applicative functor (foldMapDefault
).
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.