Copyright  (c) 20112015 diagramslib team (see LICENSE) 

License  BSDstyle (see LICENSE) 
Maintainer  diagramsdiscuss@googlegroups.com 
Safe Haskell  None 
Language  Haskell2010 
This module defines the twodimensional vector space R^2, twodimensional transformations, and various predefined twodimensional shapes. This module reexports useful functionality from a group of more specific modules:
 Diagrams.TwoD.Types defines basic types for twodimensional diagrams, including types representing the 2D Euclidean vector space and various systems of angle measurement.
 Diagrams.TwoD.Align defines alignment combinators specialized to two dimensions (see Diagrams.Align for more general alignment).
 Diagrams.TwoD.Combinators defines ways of combining diagrams specialized to two dimensions (see also Diagrams.Combinators for more general combining).
 Diagrams.TwoD.Attributes defines attributes specific to two dimensions, *e.g.* fill color, line color, and gradients.
 Diagrams.TwoD.Transform defines R^2specific transformations such as rotation by an angle, and scaling, translation, and reflection in the X and Y directions.
 Diagrams.TwoD.Deform defines some nonaffine transformations specific to two dimensions, *e.g.* parallel and perspective projections.
 Diagrams.TwoD.Ellipse defines circles and ellipses.
 Diagrams.TwoD.Arc defines circular arcs.
 Diagrams.TwoD.Path exports various operations on twodimensional paths when viewed as regions of the plane.
 Diagrams.TwoD.Polygons defines general algorithms for drawing various types of polygons.
 Diagrams.TwoD.Shapes defines other twodimensional shapes, e.g. various polygons.
 Diagrams.TwoD.Arrow contains tools for drawing arrows between things, and Diagrams.TwoD.Arrowheads defines a collection of arrowheads.
 Diagrams.TwoD.Text defines primitive text diagrams.
 Diagrams.TwoD.Image allows importing external images into diagrams.
 Diagrams.TwoD.Vector defines some special 2D vectors and functions for converting between vectors and angles.
 Diagrams.TwoD.Size defines functions for working with the size of 2D objects.
 Diagrams.TwoD.Model defines some aids for visualizing diagrams' internal model (local origins, envelopes, etc.)
Synopsis
 data V2 a = V2 !a !a
 class R1 (t :: Type > Type) where
 class R1 t => R2 (t :: Type > Type) where
 type P2 = Point V2
 type T2 = Transformation V2
 r2 :: (n, n) > V2 n
 unr2 :: V2 n > (n, n)
 mkR2 :: n > n > V2 n
 p2 :: (n, n) > P2 n
 unp2 :: P2 n > (n, n)
 mkP2 :: n > n > P2 n
 unitX :: (R1 v, Additive v, Num n) => v n
 unitY :: (R2 v, Additive v, Num n) => v n
 unit_X :: (R1 v, Additive v, Num n) => v n
 unit_Y :: (R2 v, Additive v, Num n) => v n
 perp :: Num a => V2 a > V2 a
 leftTurn :: (Num n, Ord n) => V2 n > V2 n > Bool
 xDir :: (R1 v, Additive v, Num n) => Direction v n
 yDir :: (R2 v, Additive v, Num n) => Direction v n
 tau :: Floating a => a
 angleV :: Floating n => Angle n > V2 n
 angleDir :: Floating n => Angle n > Direction V2 n
 signedAngleBetween :: RealFloat n => V2 n > V2 n > Angle n
 signedAngleBetweenDirs :: RealFloat n => Direction V2 n > Direction V2 n > Angle n
 class HasR t where
 r2PolarIso :: RealFloat n => Iso' (V2 n) (n, Angle n)
 stroke :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b) => t > QDiagram b V2 n Any
 stroke' :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > t > QDiagram b V2 n Any
 strokePath :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n > QDiagram b V2 n Any
 strokeP :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n > QDiagram b V2 n Any
 strokePath' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Path V2 n > QDiagram b V2 n Any
 strokeP' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Path V2 n > QDiagram b V2 n Any
 strokeTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n > QDiagram b V2 n Any
 strokeT :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n > QDiagram b V2 n Any
 strokeTrail' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Trail V2 n > QDiagram b V2 n Any
 strokeT' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Trail V2 n > QDiagram b V2 n Any
 strokeLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Line V2 n > QDiagram b V2 n Any
 strokeLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Loop V2 n > QDiagram b V2 n Any
 strokeLocTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) > QDiagram b V2 n Any
 strokeLocT :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) > QDiagram b V2 n Any
 strokeLocLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Line V2 n) > QDiagram b V2 n Any
 strokeLocLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Loop V2 n) > QDiagram b V2 n Any
 data FillRule
 fillRule :: HasStyle a => FillRule > a > a
 _fillRule :: Lens' (Style V2 n) FillRule
 data StrokeOpts a = StrokeOpts {
 _vertexNames :: [[a]]
 _queryFillRule :: FillRule
 vertexNames :: Lens (StrokeOpts a) (StrokeOpts a') [[a]] [[a']]
 queryFillRule :: Lens' (StrokeOpts a) FillRule
 intersectPoints :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => t > s > [P2 n]
 intersectPoints' :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => n > t > s > [P2 n]
 intersectPointsP :: OrderedField n => Path V2 n > Path V2 n > [P2 n]
 intersectPointsP' :: OrderedField n => n > Path V2 n > Path V2 n > [P2 n]
 intersectPointsT :: OrderedField n => Located (Trail V2 n) > Located (Trail V2 n) > [P2 n]
 intersectPointsT' :: OrderedField n => n > Located (Trail V2 n) > Located (Trail V2 n) > [P2 n]
 clipBy :: (HasStyle a, V a ~ V2, N a ~ n, TypeableFloat n) => Path V2 n > a > a
 clipTo :: TypeableFloat n => Path V2 n > QDiagram b V2 n Any > QDiagram b V2 n Any
 clipped :: TypeableFloat n => Path V2 n > QDiagram b V2 n Any > QDiagram b V2 n Any
 _Clip :: Iso (Clip n) (Clip n') [Path V2 n] [Path V2 n']
 _clip :: (Typeable n, OrderedField n) => Lens' (Style V2 n) [Path V2 n]
 hrule :: (InSpace V2 n t, TrailLike t) => n > t
 vrule :: (InSpace V2 n t, TrailLike t) => n > t
 unitCircle :: (TrailLike t, V t ~ V2, N t ~ n) => t
 circle :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n > t
 ellipse :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n > t
 ellipseXY :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n > n > t
 arc :: (InSpace V2 n t, OrderedField n, TrailLike t) => Direction V2 n > Angle n > t
 arc' :: (InSpace V2 n t, OrderedField n, TrailLike t) => n > Direction V2 n > Angle n > t
 arcCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n > Direction V2 n > t
 arcCCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n > Direction V2 n > t
 wedge :: (InSpace V2 n t, OrderedField n, TrailLike t) => n > Direction V2 n > Angle n > t
 arcBetween :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => Point V2 n > Point V2 n > n > t
 annularWedge :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => n > n > Direction V2 n > Angle n > t
 polygon :: (InSpace V2 n t, TrailLike t) => PolygonOpts n > t
 polyTrail :: OrderedField n => PolygonOpts n > Located (Trail V2 n)
 data PolygonOpts n = PolygonOpts {
 _polyType :: PolyType n
 _polyOrient :: PolyOrientation n
 _polyCenter :: Point V2 n
 polyType :: Lens' (PolygonOpts n) (PolyType n)
 polyOrient :: Lens' (PolygonOpts n) (PolyOrientation n)
 polyCenter :: Lens' (PolygonOpts n) (Point V2 n)
 data PolyType n
 data PolyOrientation n
 data StarOpts
 star :: OrderedField n => StarOpts > [Point V2 n] > Path V2 n
 regPoly :: (InSpace V2 n t, TrailLike t) => Int > n > t
 triangle :: (InSpace V2 n t, TrailLike t) => n > t
 eqTriangle :: (InSpace V2 n t, TrailLike t) => n > t
 square :: (InSpace V2 n t, TrailLike t) => n > t
 pentagon :: (InSpace V2 n t, TrailLike t) => n > t
 hexagon :: (InSpace V2 n t, TrailLike t) => n > t
 heptagon :: (InSpace V2 n t, TrailLike t) => n > t
 septagon :: (InSpace V2 n t, TrailLike t) => n > t
 octagon :: (InSpace V2 n t, TrailLike t) => n > t
 nonagon :: (InSpace V2 n t, TrailLike t) => n > t
 decagon :: (InSpace V2 n t, TrailLike t) => n > t
 hendecagon :: (InSpace V2 n t, TrailLike t) => n > t
 dodecagon :: (InSpace V2 n t, TrailLike t) => n > t
 unitSquare :: (InSpace V2 n t, TrailLike t) => t
 rect :: (InSpace V2 n t, TrailLike t) => n > n > t
 roundedRect :: (InSpace V2 n t, TrailLike t, RealFloat n) => n > n > n > t
 roundedRect' :: (InSpace V2 n t, TrailLike t, RealFloat n) => n > n > RoundedRectOpts n > t
 data RoundedRectOpts d = RoundedRectOpts {}
 radiusTL :: forall d. Lens' (RoundedRectOpts d) d
 radiusTR :: forall d. Lens' (RoundedRectOpts d) d
 radiusBL :: forall d. Lens' (RoundedRectOpts d) d
 radiusBR :: forall d. Lens' (RoundedRectOpts d) d
 arrowV :: (TypeableFloat n, Renderable (Path V2 n) b) => V2 n > QDiagram b V2 n Any
 arrowV' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > V2 n > QDiagram b V2 n Any
 arrowAt :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n > V2 n > QDiagram b V2 n Any
 arrowAt' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > Point V2 n > V2 n > QDiagram b V2 n Any
 arrowBetween :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n > Point V2 n > QDiagram b V2 n Any
 arrowBetween' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > Point V2 n > Point V2 n > QDiagram b V2 n Any
 connect :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any
 connect' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n > n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any
 connectPerim :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 > n2 > Angle n > Angle n > QDiagram b V2 n Any > QDiagram b V2 n Any
 connectPerim' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n > n1 > n2 > Angle n > Angle n > QDiagram b V2 n Any > QDiagram b V2 n Any
 connectOutside :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any
 connectOutside' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n > n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any
 arrow :: (TypeableFloat n, Renderable (Path V2 n) b) => n > QDiagram b V2 n Any
 arrow' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > n > QDiagram b V2 n Any
 straightShaft :: OrderedField n => Trail V2 n
 module Diagrams.TwoD.Arrowheads
 data ArrowOpts n = ArrowOpts {
 _arrowHead :: ArrowHT n
 _arrowTail :: ArrowHT n
 _arrowShaft :: Trail V2 n
 _headGap :: Measure n
 _tailGap :: Measure n
 _headStyle :: Style V2 n
 _headLength :: Measure n
 _tailStyle :: Style V2 n
 _tailLength :: Measure n
 _shaftStyle :: Style V2 n
 arrowHead :: Lens' (ArrowOpts n) (ArrowHT n)
 arrowTail :: Lens' (ArrowOpts n) (ArrowHT n)
 arrowShaft :: Lens' (ArrowOpts n) (Trail V2 n)
 headGap :: Lens' (ArrowOpts n) (Measure n)
 tailGap :: Lens' (ArrowOpts n) (Measure n)
 gaps :: Traversal' (ArrowOpts n) (Measure n)
 gap :: Traversal' (ArrowOpts n) (Measure n)
 headTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n)
 headStyle :: Lens' (ArrowOpts n) (Style V2 n)
 tailTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n)
 tailStyle :: Lens' (ArrowOpts n) (Style V2 n)
 shaftTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n)
 shaftStyle :: Lens' (ArrowOpts n) (Style V2 n)
 headLength :: Lens' (ArrowOpts n) (Measure n)
 tailLength :: Lens' (ArrowOpts n) (Measure n)
 lengths :: Traversal' (ArrowOpts n) (Measure n)
 text :: (TypeableFloat n, Renderable (Text n) b) => String > QDiagram b V2 n Any
 topLeftText :: (TypeableFloat n, Renderable (Text n) b) => String > QDiagram b V2 n Any
 alignedText :: (TypeableFloat n, Renderable (Text n) b) => n > n > String > QDiagram b V2 n Any
 baselineText :: (TypeableFloat n, Renderable (Text n) b) => String > QDiagram b V2 n Any
 font :: HasStyle a => String > a > a
 italic :: HasStyle a => a > a
 oblique :: HasStyle a => a > a
 fontSize :: (N a ~ n, Typeable n, HasStyle a) => Measure n > a > a
 bold :: HasStyle a => a > a
 bolder :: HasStyle a => a > a
 lighter :: HasStyle a => a > a
 thinWeight :: HasStyle a => a > a
 ultraLight :: HasStyle a => a > a
 light :: HasStyle a => a > a
 mediumWeight :: HasStyle a => a > a
 heavy :: HasStyle a => a > a
 semiBold :: HasStyle a => a > a
 ultraBold :: HasStyle a => a > a
 _font :: Lens' (Style v n) (Maybe String)
 _fontSizeR :: (Typeable n, OrderedField n) => Lens' (Style v n) (Measured n (Recommend n))
 _fontSize :: (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n)
 fontSizeO :: (N a ~ n, Typeable n, HasStyle a) => n > a > a
 fontSizeL :: (N a ~ n, Typeable n, Num n, HasStyle a) => n > a > a
 fontSizeN :: (N a ~ n, Typeable n, Num n, HasStyle a) => n > a > a
 fontSizeG :: (N a ~ n, Typeable n, Num n, HasStyle a) => n > a > a
 data DImage :: * > * > * where
 data ImageData :: * > * where
 ImageRaster :: DynamicImage > ImageData Embedded
 ImageRef :: FilePath > ImageData External
 ImageNative :: t > ImageData (Native t)
 data Embedded
 data External
 data Native (t :: *)
 image :: (TypeableFloat n, Typeable a, Renderable (DImage n a) b) => DImage n a > QDiagram b V2 n Any
 loadImageEmb :: Num n => FilePath > IO (Either String (DImage n Embedded))
 loadImageExt :: Num n => FilePath > IO (Either String (DImage n External))
 uncheckedImageRef :: Num n => FilePath > Int > Int > DImage n External
 raster :: Num n => (Int > Int > AlphaColour Double) > Int > Int > DImage n Embedded
 rasterDia :: (TypeableFloat n, Renderable (DImage n Embedded) b) => (Int > Int > AlphaColour Double) > Int > Int > QDiagram b V2 n Any
 rotation :: Floating n => Angle n > Transformation V2 n
 rotate :: (InSpace V2 n t, Transformable t, Floating n) => Angle n > t > t
 rotateBy :: (InSpace V2 n t, Transformable t, Floating n) => n > t > t
 rotated :: (InSpace V2 n a, Floating n, SameSpace a b, Transformable a, Transformable b) => Angle n > Iso a b a b
 rotationAround :: Floating n => P2 n > Angle n > T2 n
 rotateAround :: (InSpace V2 n t, Transformable t, Floating n) => P2 n > Angle n > t > t
 rotationTo :: OrderedField n => Direction V2 n > T2 n
 rotateTo :: (InSpace V2 n t, OrderedField n, Transformable t) => Direction V2 n > t > t
 scalingX :: (Additive v, R1 v, Fractional n) => n > Transformation v n
 scaleX :: (InSpace v n t, R2 v, Fractional n, Transformable t) => n > t > t
 scalingY :: (Additive v, R2 v, Fractional n) => n > Transformation v n
 scaleY :: (InSpace v n t, R2 v, Fractional n, Transformable t) => n > t > t
 scaling :: (Additive v, Fractional n) => n > Transformation v n
 scale :: (InSpace v n a, Eq n, Fractional n, Transformable a) => n > a > a
 scaleToX :: (InSpace v n t, R2 v, Enveloped t, Transformable t) => n > t > t
 scaleToY :: (InSpace v n t, R2 v, Enveloped t, Transformable t) => n > t > t
 scaleUToX :: (InSpace v n t, R1 v, Enveloped t, Transformable t) => n > t > t
 scaleUToY :: (InSpace v n t, R2 v, Enveloped t, Transformable t) => n > t > t
 translationX :: (Additive v, R1 v, Num n) => n > Transformation v n
 translateX :: (InSpace v n t, R1 v, Transformable t) => n > t > t
 translationY :: (Additive v, R2 v, Num n) => n > Transformation v n
 translateY :: (InSpace v n t, R2 v, Transformable t) => n > t > t
 translation :: v n > Transformation v n
 translate :: Transformable t => Vn t > t > t
 scalingRotationTo :: Floating n => V2 n > T2 n
 scaleRotateTo :: (InSpace V2 n t, Transformable t, Floating n) => V2 n > t > t
 reflectionX :: (Additive v, R1 v, Num n) => Transformation v n
 reflectX :: (InSpace v n t, R1 v, Transformable t) => t > t
 reflectionY :: (Additive v, R2 v, Num n) => Transformation v n
 reflectY :: (InSpace v n t, R2 v, Transformable t) => t > t
 reflectionXY :: (Additive v, R2 v, Num n) => Transformation v n
 reflectXY :: (InSpace v n t, R2 v, Transformable t) => t > t
 reflectionAbout :: OrderedField n => P2 n > Direction V2 n > T2 n
 reflectAbout :: (InSpace V2 n t, OrderedField n, Transformable t) => P2 n > Direction V2 n > t > t
 shearingX :: Num n => n > T2 n
 shearX :: (InSpace V2 n t, Transformable t) => n > t > t
 shearingY :: Num n => n > T2 n
 shearY :: (InSpace V2 n t, Transformable t) => n > t > t
 parallelX0 :: (R1 v, Num n) => Deformation v v n
 perspectiveX1 :: (R1 v, Functor v, Fractional n) => Deformation v v n
 parallelY0 :: (R2 v, Num n) => Deformation v v n
 perspectiveY1 :: (R2 v, Functor v, Floating n) => Deformation v v n
 facingX :: (R1 v, Functor v, Fractional n) => Deformation v v n
 facingY :: (R2 v, Functor v, Fractional n) => Deformation v v n
 (===) :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a > a > a
 () :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a > a > a
 hcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] > a
 hcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n > [a] > a
 hsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n > [a] > a
 vcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] > a
 vcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n > [a] > a
 vsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n > [a] > a
 strutX :: (Metric v, R1 v, OrderedField n) => n > QDiagram b v n m
 strutY :: (Metric v, R2 v, OrderedField n) => n > QDiagram b v n m
 padX :: (Metric v, R2 v, OrderedField n, Monoid' m) => n > QDiagram b v n m > QDiagram b v n m
 padY :: (Metric v, R2 v, Monoid' m, OrderedField n) => n > QDiagram b v n m > QDiagram b v n m
 extrudeLeft :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m
 extrudeRight :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m
 extrudeBottom :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m
 extrudeTop :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m
 rectEnvelope :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n > V2 n > QDiagram b V2 n m > QDiagram b V2 n m
 boundingRect :: (InSpace V2 n a, SameSpace a t, Enveloped t, Transformable t, TrailLike t, Monoid t, Enveloped a) => a > t
 bg :: (TypeableFloat n, Renderable (Path V2 n) b) => Colour Double > QDiagram b V2 n Any > QDiagram b V2 n Any
 bgFrame :: (TypeableFloat n, Renderable (Path V2 n) b) => n > Colour Double > QDiagram b V2 n Any > QDiagram b V2 n Any
 alignL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignT :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignB :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignTL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignTR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignBL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignBR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a
 alignX :: (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => n > a > a
 alignY :: (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => n > a > a
 centerX :: (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a > a
 centerY :: (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a > a
 centerXY :: (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a > a
 snugL :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a
 snugR :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a
 snugT :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a
 snugB :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a
 snugX :: (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n > a > a
 snugY :: (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n > a > a
 snugCenterX :: (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a
 snugCenterY :: (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a
 snugCenterXY :: (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a
 width :: (InSpace V2 n a, Enveloped a) => a > n
 height :: (InSpace V2 n a, Enveloped a) => a > n
 extentX :: (InSpace v n a, R1 v, Enveloped a) => a > Maybe (n, n)
 extentY :: (InSpace v n a, R2 v, Enveloped a) => a > Maybe (n, n)
 mkSizeSpec2D :: Num n => Maybe n > Maybe n > SizeSpec V2 n
 mkWidth :: Num n => n > SizeSpec V2 n
 mkHeight :: Num n => n > SizeSpec V2 n
 dims2D :: n > n > SizeSpec V2 n
 data Texture n
 solid :: Color a => a > Texture n
 data SpreadMethod
 data GradientStop d = GradientStop {
 _stopColor :: SomeColor
 _stopFraction :: d
 _FillTexture :: Iso' (FillTexture n) (Recommend (Texture n))
 fillTexture :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Texture n > a > a
 _fillTexture :: (Typeable n, Floating n) => Lens' (Style V2 n) (Texture n)
 getFillTexture :: FillTexture n > Texture n
 _LineTexture :: Iso (LineTexture n) (LineTexture n') (Texture n) (Texture n')
 lineTexture :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Texture n > a > a
 _lineTexture :: (Floating n, Typeable n) => Lens' (Style V2 n) (Texture n)
 lineTextureA :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => LineTexture n > a > a
 getLineTexture :: LineTexture n > Texture n
 stopFraction :: Lens' (GradientStop n) n
 stopColor :: Lens' (GradientStop n) SomeColor
 mkStops :: [(Colour Double, d, Double)] > [GradientStop d]
 data LGradient n = LGradient {
 _lGradStops :: [GradientStop n]
 _lGradStart :: Point V2 n
 _lGradEnd :: Point V2 n
 _lGradTrans :: Transformation V2 n
 _lGradSpreadMethod :: SpreadMethod
 _LG :: forall n. Prism' (Texture n) (LGradient n)
 lGradStops :: Lens' (LGradient n) [GradientStop n]
 lGradTrans :: Lens' (LGradient n) (Transformation V2 n)
 lGradStart :: Lens' (LGradient n) (Point V2 n)
 lGradEnd :: Lens' (LGradient n) (Point V2 n)
 lGradSpreadMethod :: Lens' (LGradient n) SpreadMethod
 defaultLG :: Fractional n => Texture n
 mkLinearGradient :: Num n => [GradientStop n] > Point V2 n > Point V2 n > SpreadMethod > Texture n
 data RGradient n = RGradient {
 _rGradStops :: [GradientStop n]
 _rGradCenter0 :: Point V2 n
 _rGradRadius0 :: n
 _rGradCenter1 :: Point V2 n
 _rGradRadius1 :: n
 _rGradTrans :: Transformation V2 n
 _rGradSpreadMethod :: SpreadMethod
 rGradStops :: Lens' (RGradient n) [GradientStop n]
 rGradCenter0 :: Lens' (RGradient n) (Point V2 n)
 rGradRadius0 :: Lens' (RGradient n) n
 rGradCenter1 :: Lens' (RGradient n) (Point V2 n)
 rGradRadius1 :: Lens' (RGradient n) n
 rGradTrans :: Lens' (RGradient n) (Transformation V2 n)
 rGradSpreadMethod :: Lens' (RGradient n) SpreadMethod
 defaultRG :: Fractional n => Texture n
 _RG :: forall n. Prism' (Texture n) (RGradient n)
 mkRadialGradient :: Num n => [GradientStop n] > Point V2 n > n > Point V2 n > n > SpreadMethod > Texture n
 fillColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c > a > a
 _SC :: forall n. Prism' (Texture n) SomeColor
 _AC :: Prism' (Texture n) (AlphaColour Double)
 fc :: (InSpace V2 n a, Floating n, Typeable n, HasStyle a) => Colour Double > a > a
 fcA :: (InSpace V2 n a, Floating n, Typeable n, HasStyle a) => AlphaColour Double > a > a
 recommendFillColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c > a > a
 lineColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c > a > a
 lc :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Colour Double > a > a
 lcA :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => AlphaColour Double > a > a
 showOrigin :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' m) => QDiagram b V2 n m > QDiagram b V2 n m
 showOrigin' :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' m) => OriginOpts n > QDiagram b V2 n m > QDiagram b V2 n m
 data OriginOpts n = OriginOpts {}
 oColor :: forall n. Lens' (OriginOpts n) (Colour Double)
 oScale :: forall n. Lens' (OriginOpts n) n
 oMinSize :: forall n. Lens' (OriginOpts n) n
 showEnvelope :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => QDiagram b V2 n Any > QDiagram b V2 n Any
 showEnvelope' :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => EnvelopeOpts n > QDiagram b V2 n Any > QDiagram b V2 n Any
 data EnvelopeOpts n = EnvelopeOpts {}
 eColor :: forall n. Lens' (EnvelopeOpts n) (Colour Double)
 eLineWidth :: forall n n. Lens (EnvelopeOpts n) (EnvelopeOpts n) (Measure n) (Measure n)
 ePoints :: forall n. Lens' (EnvelopeOpts n) Int
 showTrace :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => QDiagram b V2 n Any > QDiagram b V2 n Any
 showTrace' :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => TraceOpts n > QDiagram b V2 n Any > QDiagram b V2 n Any
 data TraceOpts n = TraceOpts {}
 tColor :: forall n. Lens' (TraceOpts n) (Colour Double)
 tScale :: forall n. Lens' (TraceOpts n) n
 tMinSize :: forall n. Lens' (TraceOpts n) n
 tPoints :: forall n. Lens' (TraceOpts n) Int
 showLabels :: (TypeableFloat n, Renderable (Text n) b, Semigroup m) => QDiagram b V2 n m > QDiagram b V2 n Any
R^2
A 2dimensional vector
>>>
pure 1 :: V2 Int
V2 1 1
>>>
V2 1 2 + V2 3 4
V2 4 6
>>>
V2 1 2 * V2 3 4
V2 3 8
>>>
sum (V2 1 2)
3
V2 !a !a 
Instances
class R1 (t :: Type > Type) where #
A space that has at least 1 basis vector _x
.
type T2 = Transformation V2 #
perp :: Num a => V2 a > V2 a #
the counterclockwise perpendicular vector
>>>
perp $ V2 10 20
V2 (20) 10
leftTurn :: (Num n, Ord n) => V2 n > V2 n > Bool #
leftTurn v1 v2
tests whether the direction of v2
is a left
turn from v1
(that is, if the direction of v2
can be obtained
from that of v1
by adding an angle 0 <= theta <= tau/2).
Angles
The circle constant, the ratio of a circle's circumference to its
radius. Note that pi = tau/2
.
For more information and a wellreasoned argument why we should all be using tau instead of pi, see The Tau Manifesto, http://tauday.com/.
To hear what it sounds like (and to easily memorize the first 30 digits or so), try http://youtu.be/3174T359Q.
angleV :: Floating n => Angle n > V2 n #
A unit vector at a specified angle counterclockwise from the positive xaxis
angleDir :: Floating n => Angle n > Direction V2 n #
A direction at a specified angle counterclockwise from the xDir
.
signedAngleBetween :: RealFloat n => V2 n > V2 n > Angle n #
Signed angle between two vectors. Currently defined as
signedAngleBetween u v = (u ^. _theta) ^^ (v ^. _theta)
signedAngleBetweenDirs :: RealFloat n => Direction V2 n > Direction V2 n > Angle n #
Same as signedAngleBetween
but for Directions
s.
Polar Coördinates
A space which has magnitude _r
that can be calculated numerically.
Paths
Stroking
stroke :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b) => t > QDiagram b V2 n Any #
Convert a ToPath
object into a diagram. The resulting diagram has the
names 0, 1, ... assigned to each of the path's vertices.
See also stroke'
, which takes an extra options record allowing
its behaviour to be customized.
stroke
::Path
V2
Double
>Diagram
bstroke
::Located
(Trail
V2
Double
) >Diagram
bstroke
::Located
(Trail'
Loop
V2
Double
) >Diagram
bstroke
::Located
(Trail'
Line
V2
Double
) >Diagram
b
stroke' :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > t > QDiagram b V2 n Any #
A variant of stroke
that takes an extra record of options to
customize its behaviour. In particular:
 Names can be assigned to the path's vertices
StrokeOpts
is an instance of Default
, so stroke' (
syntax may be used.with
&
... )
strokePath :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n > QDiagram b V2 n Any #
strokePath' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Path V2 n > QDiagram b V2 n Any #
strokeP' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Path V2 n > QDiagram b V2 n Any #
strokeTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n > QDiagram b V2 n Any #
strokeTrail' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Trail V2 n > QDiagram b V2 n Any #
A composition of stroke'
and pathFromTrail
for conveniently
converting a trail directly into a diagram.
strokeT' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a > Trail V2 n > QDiagram b V2 n Any #
Deprecated synonym for strokeTrail'
.
strokeLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Line V2 n > QDiagram b V2 n Any #
strokeLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Loop V2 n > QDiagram b V2 n Any #
strokeLocTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) > QDiagram b V2 n Any #
A convenience function for converting a Located Trail
directly
into a diagram; strokeLocTrail = stroke . trailLike
.
strokeLocT :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) > QDiagram b V2 n Any #
Deprecated synonym for strokeLocTrail
.
strokeLocLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Line V2 n) > QDiagram b V2 n Any #
A convenience function for converting a Located
line directly
into a diagram; strokeLocLine = stroke . trailLike . mapLoc wrapLine
.
strokeLocLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Loop V2 n) > QDiagram b V2 n Any #
A convenience function for converting a Located
loop directly
into a diagram; strokeLocLoop = stroke . trailLike . mapLoc wrapLoop
.
Enumeration of algorithms or "rules" for determining which points lie in the interior of a (possibly selfintersecting) path.
Winding  Interior points are those with a nonzero winding number. See http://en.wikipedia.org/wiki/Nonzerorule. 
EvenOdd  Interior points are those where a ray extended infinitely in a particular direction crosses the path an odd number of times. See http://en.wikipedia.org/wiki/Evenodd_rule. 
fillRule :: HasStyle a => FillRule > a > a #
Specify the fill rule that should be used for determining which points are inside a path.
data StrokeOpts a #
A record of options that control how a path is stroked.
StrokeOpts
is an instance of Default
, so a StrokeOpts
records can be created using
notation.with
{ ... }
StrokeOpts  

Instances
Default (StrokeOpts a) #  
Defined in Diagrams.TwoD.Path def :: StrokeOpts a # 
vertexNames :: Lens (StrokeOpts a) (StrokeOpts a') [[a]] [[a']] #
Atomic names that should be assigned to the vertices of the path so that they can be referenced later. If there are not enough names, the extra vertices are not assigned names; if there are too many, the extra names are ignored. Note that this is a list of lists of names, since paths can consist of multiple trails. The first list of names are assigned to the vertices of the first trail, the second list to the second trail, and so on.
The default value is the empty list.
queryFillRule :: Lens' (StrokeOpts a) FillRule #
intersectPoints :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => t > s > [P2 n] #
Find the intersect points of two objects that can be converted to a path.
intersectPoints' :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => n > t > s > [P2 n] #
Find the intersect points of two objects that can be converted to a path within the given tolerance.
intersectPointsP :: OrderedField n => Path V2 n > Path V2 n > [P2 n] #
Compute the intersect points between two paths.
intersectPointsP' :: OrderedField n => n > Path V2 n > Path V2 n > [P2 n] #
Compute the intersect points between two paths within given tolerance.
intersectPointsT :: OrderedField n => Located (Trail V2 n) > Located (Trail V2 n) > [P2 n] #
Compute the intersect points between two located trails.
intersectPointsT' :: OrderedField n => n > Located (Trail V2 n) > Located (Trail V2 n) > [P2 n] #
Compute the intersect points between two located trails within the given tolerance.
Clipping
clipBy :: (HasStyle a, V a ~ V2, N a ~ n, TypeableFloat n) => Path V2 n > a > a #
Clip a diagram by the given path:
 Only the parts of the diagram which lie in the interior of the path will be drawn.
 The envelope of the diagram is unaffected.
clipTo :: TypeableFloat n => Path V2 n > QDiagram b V2 n Any > QDiagram b V2 n Any #
Clip a diagram to the given path setting its envelope to the pointwise minimum of the envelopes of the diagram and path. The trace consists of those parts of the original diagram's trace which fall within the clipping path, or parts of the path's trace within the original diagram.
clipped :: TypeableFloat n => Path V2 n > QDiagram b V2 n Any > QDiagram b V2 n Any #
Clip a diagram to the clip path taking the envelope and trace of the clip path.
_clip :: (Typeable n, OrderedField n) => Lens' (Style V2 n) [Path V2 n] #
Lens onto the Clip in a style. An empty list means no clipping.
Shapes
Rules
hrule :: (InSpace V2 n t, TrailLike t) => n > t #
Create a centered horizontal (LR) line of the given length.
hruleEx = vcat' (with & sep .~ 0.2) (map hrule [1..5]) # centerXY # pad 1.1
vrule :: (InSpace V2 n t, TrailLike t) => n > t #
Create a centered vertical (TB) line of the given length.
vruleEx = hcat' (with & sep .~ 0.2) (map vrule [1, 1.2 .. 2]) # centerXY # pad 1.1
Circleish things
unitCircle :: (TrailLike t, V t ~ V2, N t ~ n) => t #
A circle of radius 1, with center at the origin.
circle :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n > t #
A circle of the given radius, centered at the origin. As a path, it begins at (r,0).
ellipse :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n > t #
ellipse e
constructs an ellipse with eccentricity e
by
scaling the unit circle in the X direction. The eccentricity must
be within the interval [0,1).
ellipseXY :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n > n > t #
ellipseXY x y
creates an axisaligned ellipse, centered at the
origin, with radius x
along the xaxis and radius y
along the
yaxis.
arc :: (InSpace V2 n t, OrderedField n, TrailLike t) => Direction V2 n > Angle n > t #
Given a start direction d
and a sweep angle s
,
is the
path of a radius one arc starting at arc
d sd
and sweeping out the angle
s
counterclockwise (for positive s). The resulting
Trail
is allowed to wrap around and overlap itself.
arc' :: (InSpace V2 n t, OrderedField n, TrailLike t) => n > Direction V2 n > Angle n > t #
Given a radus r
, a start direction d
and an angle s
,
is the path of a radius arc'
r d s(abs r)
arc starting at
d
and sweeping out the angle s
counterclockwise (for positive
s). The origin of the arc is its center.
arc'Ex = mconcat [ arc' r xDir (1/4 @@ turn)  r < [0.5,1,1.5] ] # centerXY # pad 1.1
arcCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n > Direction V2 n > t #
Like arcAngleCCW
but clockwise.
arcCCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n > Direction V2 n > t #
Given a start direction s
and end direction e
, arcCCW s e
is the
path of a radius one arc counterclockwise between the two directions.
The origin of the arc is its center.
wedge :: (InSpace V2 n t, OrderedField n, TrailLike t) => n > Direction V2 n > Angle n > t #
Create a circular wedge of the given radius, beginning at the given direction and extending through the given angle.
wedgeEx = hcat' (with & sep .~ 0.5) [ wedge 1 xDir (1/4 @@ turn) , wedge 1 (rotate (7/30 @@ turn) xDir) (4/30 @@ turn) , wedge 1 (rotate (1/8 @@ turn) xDir) (3/4 @@ turn) ] # fc blue # centerXY # pad 1.1
arcBetween :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => Point V2 n > Point V2 n > n > t #
arcBetween p q height
creates an arc beginning at p
and
ending at q
, with its midpoint at a distance of abs height
away from the straight line from p
to q
. A positive value of
height
results in an arc to the left of the line from p
to
q
; a negative value yields one to the right.
arcBetweenEx = mconcat [ arcBetween origin (p2 (2,1)) ht  ht < [0.2, 0.1 .. 0.2] ] # centerXY # pad 1.1
annularWedge :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => n > n > Direction V2 n > Angle n > t #
Create an annular wedge of the given radii, beginning at the first direction and extending through the given sweep angle. The radius of the outer circle is given first.
annularWedgeEx = hsep 0.50 [ annularWedge 1 0.5 xDir (1/4 @@ turn) , annularWedge 1 0.3 (rotate (7/30 @@ turn) xDir) (4/30 @@ turn) , annularWedge 1 0.7 (rotate (1/8 @@ turn) xDir) (3/4 @@ turn) ] # fc blue # centerXY # pad 1.1
General polygons
polygon :: (InSpace V2 n t, TrailLike t) => PolygonOpts n > t #
Generate the polygon described by the given options.
polyTrail :: OrderedField n => PolygonOpts n > Located (Trail V2 n) #
Generate a polygon. See PolygonOpts
for more information.
data PolygonOpts n #
Options for specifying a polygon.
PolygonOpts  

Instances
Num n => Default (PolygonOpts n) #  The default polygon is a regular pentagon of radius 1, centered at the origin, aligned to the xaxis. 
Defined in Diagrams.TwoD.Polygons def :: PolygonOpts n # 
polyType :: Lens' (PolygonOpts n) (PolyType n) #
Specification for the polygon's vertices.
polyOrient :: Lens' (PolygonOpts n) (PolyOrientation n) #
Should a rotation be applied to the polygon in order to orient it in a particular way?
polyCenter :: Lens' (PolygonOpts n) (Point V2 n) #
Should a translation be applied to the polygon in order to place the center at a particular location?
Method used to determine the vertices of a polygon.
PolyPolar [Angle n] [n]  A "polar" polygon.
To construct an ngon, use a list of n1 angles and n radii. Extra angles or radii are ignored. Cyclic polygons (with all vertices lying on a
circle) can be constructed using a second
argument of 
PolySides [Angle n] [n]  A polygon determined by the distance between successive vertices and the external angles formed by each three successive vertices. In other words, a polygon specified by "turtle graphics": go straight ahead x1 units; turn by external angle a1; go straight ahead x2 units; turn by external angle a2; etc. The polygon will be centered at the centroid of its vertices.
To construct an ngon, use a list of n2 angles and n1 edge lengths. Extra angles or lengths are ignored. 
PolyRegular Int n  A regular polygon with the given number of sides (first argument) and the given radius (second argument). 
data PolyOrientation n #
Determine how a polygon should be oriented.
NoOrient  No special orientation; the first vertex will be at (1,0). 
OrientH  Orient horizontally, so the bottommost edge is parallel to the xaxis. This is the default. 
OrientV  Orient vertically, so the leftmost edge is parallel to the yaxis. 
OrientTo (V2 n)  Orient so some edge is facing in the direction of, that is, perpendicular to, the given vector. 
Instances
Star polygons
Options for creating "star" polygons, where the edges connect possibly nonadjacent vertices.
StarFun (Int > Int)  Specify the order in which the vertices should be connected by a function that maps each vertex index to the index of the vertex that should come next. Indexing of vertices begins at 0. 
StarSkip Int  Specify a star polygon by a "skip". A skip of 1 indicates a normal polygon, where edges go between successive vertices. A skip of 2 means that edges will connect every second vertex, skipping one in between. Generally, a skip of n means that edges will connect every nth vertex. 
star :: OrderedField n => StarOpts > [Point V2 n] > Path V2 n #
Create a generalized star polygon. The StarOpts
are used
to determine in which order the given vertices should be
connected. The intention is that the second argument of type
[Point v]
could be generated by a call to polygon
, regPoly
, or
the like, since a list of vertices is TrailLike
. But of course
the list can be generated any way you like. A
is
returned (instead of any Path
v
TrailLike
) because the resulting path
may have more than one component, for example if the vertices are
to be connected in several disjoint cycles.
Regular polygons
regPoly :: (InSpace V2 n t, TrailLike t) => Int > n > t #
Create a regular polygon. The first argument is the number of
sides, and the second is the length of the sides. (Compare to the
polygon
function with a PolyRegular
option, which produces
polygons of a given radius).
The polygon will be oriented with one edge parallel to the xaxis.
triangle :: (InSpace V2 n t, TrailLike t) => n > t #
An equilateral triangle, with sides of the given length and base parallel to the xaxis.
eqTriangle :: (InSpace V2 n t, TrailLike t) => n > t #
A synonym for triangle
, provided for backwards compatibility.
square :: (InSpace V2 n t, TrailLike t) => n > t #
A square with its center at the origin and sides of the given length, oriented parallel to the axes.
pentagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular pentagon, with sides of the given length and base parallel to the xaxis.
hexagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular hexagon, with sides of the given length and base parallel to the xaxis.
heptagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular heptagon, with sides of the given length and base parallel to the xaxis.
septagon :: (InSpace V2 n t, TrailLike t) => n > t #
A synonym for heptagon
. It is, however, completely inferior,
being a base admixture of the Latin septum (seven) and the
Greek γωνία (angle).
octagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular octagon, with sides of the given length and base parallel to the xaxis.
nonagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular nonagon, with sides of the given length and base parallel to the xaxis.
decagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular decagon, with sides of the given length and base parallel to the xaxis.
hendecagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular hendecagon, with sides of the given length and base parallel to the xaxis.
dodecagon :: (InSpace V2 n t, TrailLike t) => n > t #
A regular dodecagon, with sides of the given length and base parallel to the xaxis.
Other special polygons
unitSquare :: (InSpace V2 n t, TrailLike t) => t #
A square with its center at the origin and sides of length 1, oriented parallel to the axes.
rect :: (InSpace V2 n t, TrailLike t) => n > n > t #
rect w h
is an axisaligned rectangle of width w
and height
h
, centered at the origin.
Other shapes
roundedRect :: (InSpace V2 n t, TrailLike t, RealFloat n) => n > n > n > t #
roundedRect w h r
generates a closed trail, or closed path
centered at the origin, of an axisaligned rectangle with width
w
, height h
, and circular rounded corners of radius r
. If
r
is negative the corner will be cut out in a reverse arc. If
the size of r
is larger than half the smaller dimension of w
and h
, then it will be reduced to fit in that range, to prevent
the corners from overlapping. The trail or path begins with the
right edge and proceeds counterclockwise. If you need to specify
a different radius for each corner individually, use
roundedRect'
instead.
roundedRectEx = pad 1.1 . centerXY $ hcat' (with & sep .~ 0.2) [ roundedRect 0.5 0.4 0.1 , roundedRect 0.5 0.4 (0.1) , roundedRect' 0.7 0.4 (with & radiusTL .~ 0.2 & radiusTR .~ 0.2 & radiusBR .~ 0.1) ]
roundedRect' :: (InSpace V2 n t, TrailLike t, RealFloat n) => n > n > RoundedRectOpts n > t #
roundedRect'
works like roundedRect
but allows you to set the radius of
each corner indivually, using RoundedRectOpts
. The default corner radius is 0.
Each radius can also be negative, which results in the curves being reversed
to be inward instead of outward.
data RoundedRectOpts d #
Instances
Num d => Default (RoundedRectOpts d) #  
Defined in Diagrams.TwoD.Shapes def :: RoundedRectOpts d # 
radiusTL :: forall d. Lens' (RoundedRectOpts d) d #
radiusTR :: forall d. Lens' (RoundedRectOpts d) d #
radiusBL :: forall d. Lens' (RoundedRectOpts d) d #
radiusBR :: forall d. Lens' (RoundedRectOpts d) d #
Arrows
arrowV :: (TypeableFloat n, Renderable (Path V2 n) b) => V2 n > QDiagram b V2 n Any #
arrowV v
creates an arrow with the direction and norm of
the vector v
(with its tail at the origin), using default
parameters.
arrowV' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > V2 n > QDiagram b V2 n Any #
arrowV' v
creates an arrow with the direction and norm of
the vector v
(with its tail at the origin).
arrowAt :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n > V2 n > QDiagram b V2 n Any #
Create an arrow starting at s with length and direction determined by the vector v.
arrowAt' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > Point V2 n > V2 n > QDiagram b V2 n Any #
arrowBetween :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n > Point V2 n > QDiagram b V2 n Any #
arrowBetween s e
creates an arrow pointing from s
to e
with default parameters.
arrowBetween' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > Point V2 n > Point V2 n > QDiagram b V2 n Any #
arrowBetween' opts s e
creates an arrow pointing from s
to
e
using the given options. In particular, it scales and
rotates arrowShaft
to go between s
and e
, taking head,
tail, and gaps into account.
connect :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any #
Connect two diagrams with a straight arrow.
connect' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n > n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any #
Connect two diagrams with an arbitrary arrow.
connectPerim :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 > n2 > Angle n > Angle n > QDiagram b V2 n Any > QDiagram b V2 n Any #
Connect two diagrams at point on the perimeter of the diagrams, choosen by angle.
connectPerim' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n > n1 > n2 > Angle n > Angle n > QDiagram b V2 n Any > QDiagram b V2 n Any #
connectOutside :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any #
Draw an arrow from diagram named "n1" to diagram named "n2". The arrow lies on the line between the centres of the diagrams, but is drawn so that it stops at the boundaries of the diagrams, using traces to find the intersection points.
connectOutside' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n > n1 > n2 > QDiagram b V2 n Any > QDiagram b V2 n Any #
arrow :: (TypeableFloat n, Renderable (Path V2 n) b) => n > QDiagram b V2 n Any #
arrow len
creates an arrow of length len
with default
parameters, starting at the origin and ending at the point
(len,0)
.
arrow' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n > n > QDiagram b V2 n Any #
arrow' opts len
creates an arrow of length len
using the
given options, starting at the origin and ending at the point
(len,0)
. In particular, it scales the given arrowShaft
so
that the entire arrow has length len
.
straightShaft :: OrderedField n => Trail V2 n #
Straight line arrow shaft.
module Diagrams.TwoD.Arrowheads
ArrowOpts  

Instances
TypeableFloat n => Default (ArrowOpts n) #  
Defined in Diagrams.TwoD.Arrow 
headGap :: Lens' (ArrowOpts n) (Measure n) #
Distance to leave between the head and the target point.
tailGap :: Lens' (ArrowOpts n) (Measure n) #
Distance to leave between the starting point and the tail.
gaps :: Traversal' (ArrowOpts n) (Measure n) #
Set both the headGap
and tailGap
simultaneously.
gap :: Traversal' (ArrowOpts n) (Measure n) #
Same as gaps, provided for backward compatiiblity.
headTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n) #
A lens for setting or modifying the texture of an arrowhead. For
example, one may write ... (with & headTexture .~ grad)
to get an
arrow with a head filled with a gradient, assuming grad has been
defined. Or ... (with & headTexture .~ solid blue
to set the head
color to blue. For more general control over the style of arrowheads,
see headStyle
.
headStyle :: Lens' (ArrowOpts n) (Style V2 n) #
Style to apply to the head. headStyle
is modified by using the lens
combinator %~
to change the current style. For example, to change
an opaque black arrowhead to translucent orange:
(with & headStyle %~ fc orange . opacity 0.75)
.
tailTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n) #
A lens for setting or modifying the texture of an arrow
tail. This is *not* a valid lens (see committed
).
shaftTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n) #
A lens for setting or modifying the texture of an arrow shaft.
headLength :: Lens' (ArrowOpts n) (Measure n) #
The length from the start of the joint to the tip of the head.
tailLength :: Lens' (ArrowOpts n) (Measure n) #
The length of the tail plus its joint.
lengths :: Traversal' (ArrowOpts n) (Measure n) #
Set both the headLength
and tailLength
simultaneously.
Text
text :: (TypeableFloat n, Renderable (Text n) b) => String > QDiagram b V2 n Any #
Create a primitive text diagram from the given string, with center
alignment, equivalent to
.alignedText
0.5 0.5
Note that it takes up no space, as text size information is not available.
topLeftText :: (TypeableFloat n, Renderable (Text n) b) => String > QDiagram b V2 n Any #
Create a primitive text diagram from the given string, origin at
the top left corner of the text's bounding box, equivalent to
.alignedText
0 1
Note that it takes up no space.
alignedText :: (TypeableFloat n, Renderable (Text n) b) => n > n > String > QDiagram b V2 n Any #
Create a primitive text diagram from the given string, with the origin set to a point interpolated within the bounding box. The first parameter varies from 0 (left) to 1 (right), and the second parameter from 0 (bottom) to 1 (top). Some backends do not implement this and instead snap to closest corner or the center.
The height of this box is determined by the font's potential ascent and descent, rather than the height of the particular string.
Note that it takes up no space.
baselineText :: (TypeableFloat n, Renderable (Text n) b) => String > QDiagram b V2 n Any #
Create a primitive text diagram from the given string, with the origin set to be on the baseline, at the beginning (although not bounding). This is the reference point of showText in the Cairo graphics library.
Note that it takes up no space.
font :: HasStyle a => String > a > a #
Specify a font family to be used for all text within a diagram.
fontSize :: (N a ~ n, Typeable n, HasStyle a) => Measure n > a > a #
Set the font size, that is, the size of the font's emsquare as
measured within the current local vector space. The default size
is local 1
(which is applied by recommendFontSize
).
thinWeight :: HasStyle a => a > a #
Set all text using a thin font weight.
ultraLight :: HasStyle a => a > a #
Set all text using a extra light font weight.
mediumWeight :: HasStyle a => a > a #
Set all text using a medium font weight.
_fontSizeR :: (Typeable n, OrderedField n) => Lens' (Style v n) (Measured n (Recommend n)) #
_fontSize :: (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n) #
Lens to commit a font size. This is *not* a valid lens (see
commited
.
fontSizeO :: (N a ~ n, Typeable n, HasStyle a) => n > a > a #
A convenient synonym for 'fontSize (Output w)'.
fontSizeL :: (N a ~ n, Typeable n, Num n, HasStyle a) => n > a > a #
A convenient sysnonym for 'fontSize (Local w)'.
fontSizeN :: (N a ~ n, Typeable n, Num n, HasStyle a) => n > a > a #
A convenient synonym for 'fontSize (Normalized w)'.
fontSizeG :: (N a ~ n, Typeable n, Num n, HasStyle a) => n > a > a #
A convenient synonym for 'fontSize (Global w)'.
Images
data DImage :: * > * > * where #
An image primitive, the two ints are width followed by height.
Will typically be created by loadImageEmb
or loadImageExt
which,
will handle setting the width and height to the actual width and height
of the image.
Instances
Fractional n => Transformable (DImage n a) #  
Defined in Diagrams.TwoD.Image  
Fractional n => HasOrigin (DImage n a) #  
Defined in Diagrams.TwoD.Image  
Fractional n => Renderable (DImage n a) NullBackend #  
Defined in Diagrams.TwoD.Image render :: NullBackend > DImage n a > Render NullBackend (V (DImage n a)) (N (DImage n a)) #  
RealFloat n => HasQuery (DImage n a) Any #  
type V (DImage n a) #  
Defined in Diagrams.TwoD.Image  
type N (DImage n a) #  
Defined in Diagrams.TwoD.Image 
data ImageData :: * > * where #
ImageData
is either a JuicyPixels DynamicImage
tagged as Embedded
or
a reference tagged as External
. Additionally Native
is provided for
external libraries to hook into.
ImageRaster :: DynamicImage > ImageData Embedded  
ImageRef :: FilePath > ImageData External  
ImageNative :: t > ImageData (Native t) 
image :: (TypeableFloat n, Typeable a, Renderable (DImage n a) b) => DImage n a > QDiagram b V2 n Any #
loadImageEmb :: Num n => FilePath > IO (Either String (DImage n Embedded)) #
Use JuicyPixels to read a file in any format and wrap it in a DImage
.
The width and height of the image are set to their actual values.
loadImageExt :: Num n => FilePath > IO (Either String (DImage n External)) #
Check that a file exists, and use JuicyPixels to figure out the right size, but save a reference to the image instead of the raster data
uncheckedImageRef :: Num n => FilePath > Int > Int > DImage n External #
Make an "unchecked" image reference; have to specify a width and height. Unless the aspect ratio of the external image is the w :: h, then the image will be distorted.
raster :: Num n => (Int > Int > AlphaColour Double) > Int > Int > DImage n Embedded #
Create an image "from scratch" by specifying the pixel data
rasterDia :: (TypeableFloat n, Renderable (DImage n Embedded) b) => (Int > Int > AlphaColour Double) > Int > Int > QDiagram b V2 n Any #
Crate a diagram from raw raster data.
Transformations
Rotation
rotation :: Floating n => Angle n > Transformation V2 n #
Create a transformation which performs a rotation about the local
origin by the given angle. See also rotate
.
rotate :: (InSpace V2 n t, Transformable t, Floating n) => Angle n > t > t #
Rotate about the local origin by the given angle. Positive angles
correspond to counterclockwise rotation, negative to
clockwise. The angle can be expressed using any of the Iso
s on
Angle
. For example, rotate (1/4 @@
, turn
)rotate
(tau/4 @@ rad)
, and rotate (90 @@ deg)
all
represent the same transformation, namely, a counterclockwise
rotation by a right angle. To rotate about some point other than
the local origin, see rotateAbout
.
Note that writing rotate (1/4)
, with no Angle
constructor,
will yield an error since GHC cannot figure out which sort of
angle you want to use. In this common situation you can use
rotateBy
, which interprets its argument as a number of turns.
rotated :: (InSpace V2 n a, Floating n, SameSpace a b, Transformable a, Transformable b) => Angle n > Iso a b a b #
rotationAround :: Floating n => P2 n > Angle n > T2 n #
rotationAbout p
is a rotation about the point p
(instead of
around the local origin).
rotateAround :: (InSpace V2 n t, Transformable t, Floating n) => P2 n > Angle n > t > t #
rotateAbout p
is like rotate
, except it rotates around the
point p
instead of around the local origin.
rotationTo :: OrderedField n => Direction V2 n > T2 n #
The rotation that aligns the xaxis with the given direction.
rotateTo :: (InSpace V2 n t, OrderedField n, Transformable t) => Direction V2 n > t > t #
Rotate around the local origin such that the x axis aligns with the given direction.
Scaling
scalingX :: (Additive v, R1 v, Fractional n) => n > Transformation v n #
Construct a transformation which scales by the given factor in the x (horizontal) direction.
scaleX :: (InSpace v n t, R2 v, Fractional n, Transformable t) => n > t > t #
Scale a diagram by the given factor in the x (horizontal)
direction. To scale uniformly, use scale
.
scalingY :: (Additive v, R2 v, Fractional n) => n > Transformation v n #
Construct a transformation which scales by the given factor in the y (vertical) direction.
scaleY :: (InSpace v n t, R2 v, Fractional n, Transformable t) => n > t > t #
Scale a diagram by the given factor in the y (vertical)
direction. To scale uniformly, use scale
.
scaling :: (Additive v, Fractional n) => n > Transformation v n #
Create a uniform scaling transformation.
scale :: (InSpace v n a, Eq n, Fractional n, Transformable a) => n > a > a #
Scale uniformly in every dimension by the given scalar.
scaleToX :: (InSpace v n t, R2 v, Enveloped t, Transformable t) => n > t > t #
scaleToX w
scales a diagram in the x (horizontal) direction by
whatever factor required to make its width w
. scaleToX
should not be applied to diagrams with a width of 0, such as
vrule
.
scaleToY :: (InSpace v n t, R2 v, Enveloped t, Transformable t) => n > t > t #
scaleToY h
scales a diagram in the y (vertical) direction by
whatever factor required to make its height h
. scaleToY
should not be applied to diagrams with a height of 0, such as
hrule
.
scaleUToX :: (InSpace v n t, R1 v, Enveloped t, Transformable t) => n > t > t #
scaleUToX w
scales a diagram uniformly by whatever factor
required to make its width w
. scaleUToX
should not be
applied to diagrams with a width of 0, such as vrule
.
scaleUToY :: (InSpace v n t, R2 v, Enveloped t, Transformable t) => n > t > t #
scaleUToY h
scales a diagram uniformly by whatever factor
required to make its height h
. scaleUToY
should not be applied
to diagrams with a height of 0, such as hrule
.
Translation
translationX :: (Additive v, R1 v, Num n) => n > Transformation v n #
Construct a transformation which translates by the given distance in the x (horizontal) direction.
translateX :: (InSpace v n t, R1 v, Transformable t) => n > t > t #
Translate a diagram by the given distance in the x (horizontal) direction.
translationY :: (Additive v, R2 v, Num n) => n > Transformation v n #
Construct a transformation which translates by the given distance in the y (vertical) direction.
translateY :: (InSpace v n t, R2 v, Transformable t) => n > t > t #
Translate a diagram by the given distance in the y (vertical) direction.
translation :: v n > Transformation v n #
Create a translation.
translate :: Transformable t => Vn t > t > t #
Translate by a vector.
Conformal affine maps
scalingRotationTo :: Floating n => V2 n > T2 n #
The anglepreserving linear map that aligns the xaxis unit vector
with the given vector. See also scaleRotateTo
.
scaleRotateTo :: (InSpace V2 n t, Transformable t, Floating n) => V2 n > t > t #
Rotate and uniformly scale around the local origin such that the xaxis aligns with the given vector. This satisfies the equation
scaleRotateTo v = rotateTo (dir v) . scale (norm v)
up to floating point rounding errors, but is more accurate and performant since it avoids cancellable uses of trigonometric functions.
Reflection
reflectionX :: (Additive v, R1 v, Num n) => Transformation v n #
Construct a transformation which flips a diagram from left to right, i.e. sends the point (x,y) to (x,y).
reflectX :: (InSpace v n t, R1 v, Transformable t) => t > t #
Flip a diagram from left to right, i.e. send the point (x,y) to (x,y).
reflectionY :: (Additive v, R2 v, Num n) => Transformation v n #
Construct a transformation which flips a diagram from top to bottom, i.e. sends the point (x,y) to (x,y).
reflectY :: (InSpace v n t, R2 v, Transformable t) => t > t #
Flip a diagram from top to bottom, i.e. send the point (x,y) to (x,y).
reflectionXY :: (Additive v, R2 v, Num n) => Transformation v n #
Construct a transformation which flips the diagram about x=y, i.e. sends the point (x,y) to (y,x).
reflectXY :: (InSpace v n t, R2 v, Transformable t) => t > t #
Flips the diagram about x=y, i.e. send the point (x,y) to (y,x).
reflectionAbout :: OrderedField n => P2 n > Direction V2 n > T2 n #
reflectionAbout p d
is a reflection in the line determined by
the point p
and direction d
.
reflectAbout :: (InSpace V2 n t, OrderedField n, Transformable t) => P2 n > Direction V2 n > t > t #
reflectAbout p d
reflects a diagram in the line determined by
the point p
and direction d
.
Shears
shearingX :: Num n => n > T2 n #
shearingX d
is the linear transformation which is the identity on
y coordinates and sends (0,1)
to (d,1)
.
shearX :: (InSpace V2 n t, Transformable t) => n > t > t #
shearX d
performs a shear in the xdirection which sends
(0,1)
to (d,1)
.
shearingY :: Num n => n > T2 n #
shearingY d
is the linear transformation which is the identity on
x coordinates and sends (1,0)
to (1,d)
.
shearY :: (InSpace V2 n t, Transformable t) => n > t > t #
shearY d
performs a shear in the ydirection which sends
(1,0)
to (1,d)
.
Deformations  nonaffine transforms
parallelX0 :: (R1 v, Num n) => Deformation v v n #
The parallel projection onto the plane x=0
perspectiveX1 :: (R1 v, Functor v, Fractional n) => Deformation v v n #
The perspective division onto the plane x=1 along lines going through the origin.
parallelY0 :: (R2 v, Num n) => Deformation v v n #
The parallel projection onto the plane y=0
perspectiveY1 :: (R2 v, Functor v, Floating n) => Deformation v v n #
The perspective division onto the plane y=1 along lines going through the origin.
facingX :: (R1 v, Functor v, Fractional n) => Deformation v v n #
The viewing transform for a viewer facing along the positive X
axis. X coördinates stay fixed, while Y coördinates are compressed
with increasing distance. asDeformation (translation unitX) <>
parallelX0 <> frustrumX = perspectiveX1
facingY :: (R2 v, Functor v, Fractional n) => Deformation v v n #
Combinators
Combining multiple diagrams
(===) :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a > a > a infixl 6 #
Place two diagrams (or other objects) vertically adjacent to one another, with the first diagram above the second. Since Haskell ignores whitespace in expressions, one can thus write
c === d
to place c
above d
. The local origin of the resulting
combined diagram is the same as the local origin of the first.
(===)
is associative and has mempty
as an identity. See the
documentation of beside
for more information.
() :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a > a > a infixl 6 #
Place two diagrams (or other juxtaposable objects) horizontally
adjacent to one another, with the first diagram to the left of
the second. The local origin of the resulting combined diagram
is the same as the local origin of the first. ()
is
associative and has mempty
as an identity. See the
documentation of beside
for more information.
hcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] > a #
Lay out a list of juxtaposable objects in a row from left to right, so that their local origins lie along a single horizontal line, with successive envelopes tangent to one another.
hcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n > [a] > a #
hsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n > [a] > a #
A convenient synonym for horizontal concatenation with
separation: hsep s === hcat' (with & sep .~ s)
.
vcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] > a #
Lay out a list of juxtaposable objects in a column from top to bottom, so that their local origins lie along a single vertical line, with successive envelopes tangent to one another.
vcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n > [a] > a #
vsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n > [a] > a #
A convenient synonym for vertical concatenation with
separation: vsep s === vcat' (with & sep .~ s)
.
Spacing and envelopes
strutX :: (Metric v, R1 v, OrderedField n) => n > QDiagram b v n m #
strutX w
is an empty diagram with width w
, height 0, and a
centered local origin. Note that strutX (w)
behaves the same as
strutX w
.
strutY :: (Metric v, R2 v, OrderedField n) => n > QDiagram b v n m #
strutY h
is an empty diagram with height h
, width 0, and a
centered local origin. Note that strutY (h)
behaves the same as
strutY h
.
padX :: (Metric v, R2 v, OrderedField n, Monoid' m) => n > QDiagram b v n m > QDiagram b v n m #
padX s
"pads" a diagram in the xdirection, expanding its
envelope horizontally by a factor of s
(factors between 0 and 1
can be used to shrink the envelope). Note that the envelope will
expand with respect to the local origin, so if the origin is not
centered horizontally the padding may appear "uneven". If this
is not desired, the origin can be centered (using centerX
)
before applying padX
.
padY :: (Metric v, R2 v, Monoid' m, OrderedField n) => n > QDiagram b v n m > QDiagram b v n m #
padY s
"pads" a diagram in the ydirection, expanding its
envelope vertically by a factor of s
(factors between
0 and 1 can be used to shrink the envelope). Note that
the envelope will expand with respect to the local origin,
so if the origin is not centered vertically the padding may appear
"uneven". If this is not desired, the origin can be centered
(using centerY
) before applying padY
.
extrudeLeft :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m #
extrudeLeft s
"extrudes" a diagram in the negative xdirection,
offsetting its envelope by the provided distance. When s < 0
,
the envelope is inset instead.
See the documentation for extrudeEnvelope
for more information.
extrudeRight :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m #
extrudeRight s
"extrudes" a diagram in the positive xdirection,
offsetting its envelope by the provided distance. When s < 0
,
the envelope is inset instead.
See the documentation for extrudeEnvelope
for more information.
extrudeBottom :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m #
extrudeBottom s
"extrudes" a diagram in the negative ydirection,
offsetting its envelope by the provided distance. When s < 0
,
the envelope is inset instead.
See the documentation for extrudeEnvelope
for more information.
extrudeTop :: (OrderedField n, Monoid' m) => n > QDiagram b V2 n m > QDiagram b V2 n m #
extrudeTop s
"extrudes" a diagram in the positive ydirection,
offsetting its envelope by the provided distance. When s < 0
,
the envelope is inset instead.
See the documentation for extrudeEnvelope
for more information.
rectEnvelope :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n > V2 n > QDiagram b V2 n m > QDiagram b V2 n m #
rectEnvelope p v
sets the envelope of a diagram to a rectangle whose
lowerleft corner is at p
and whose upperright corner is at p
.+^ v
. Useful for selecting the rectangular portion of a
diagram which should actually be "viewed" in the final render,
if you don't want to see the entire diagram.
Background
boundingRect :: (InSpace V2 n a, SameSpace a t, Enveloped t, Transformable t, TrailLike t, Monoid t, Enveloped a) => a > t #
Construct a bounding rectangle for an enveloped object, that is, the smallest axisaligned rectangle which encloses the object.
bg :: (TypeableFloat n, Renderable (Path V2 n) b) => Colour Double > QDiagram b V2 n Any > QDiagram b V2 n Any #
"Set the background color" of a diagram. That is, place a diagram atop a bounding rectangle of the given color.
bgFrame :: (TypeableFloat n, Renderable (Path V2 n) b) => n > Colour Double > QDiagram b V2 n Any > QDiagram b V2 n Any #
Similar to bg
but makes the colored background rectangle larger than
the diagram. The first parameter is used to set how far the background
extends beyond the diagram.
Alignment
alignL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a #
Align along the left edge, i.e. translate the diagram in a horizontal direction so that the local origin is on the left edge of the envelope.
alignR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a #
Align along the right edge.
alignT :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a #
Align along the top edge.
alignB :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a > a #
Align along the bottom edge.
alignX :: (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => n > a > a #
alignX
and snugX
move the local origin horizontally as follows:
alignX (1)
moves the local origin to the left edge of the boundary;align 1
moves the local origin to the right edge; any other argument interpolates linearly between these. For
example,
alignX 0
centers,alignX 2
moves the origin one "radius" to the right of the right edge, and so on. snugX
works the same way.
alignY :: (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => n > a > a #
Like alignX
, but moving the local origin vertically, with an
argument of 1
corresponding to the top edge and (1)
corresponding
to the bottom edge.
centerX :: (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a > a #
Center the local origin along the Xaxis.
centerY :: (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a > a #
Center the local origin along the Yaxis.
centerXY :: (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a > a #
Center along both the X and Yaxes.
Snugging
snugX :: (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n > a > a #
See the documentation for alignX
.
snugY :: (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n > a > a #
See the documentation for alignY
.
snugCenterX :: (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a #
snugCenterY :: (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a #
snugCenterXY :: (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a > a #
Size
Computing size
width :: (InSpace V2 n a, Enveloped a) => a > n #
Compute the width of an enveloped object.
Note this is just diameter unitX
.
extentX :: (InSpace v n a, R1 v, Enveloped a) => a > Maybe (n, n) #
Compute the absolute xcoordinate range of an enveloped object in
the form (lo,hi)
. Return Nothing
for objects with an empty
envelope.
Note this is just extent unitX
.
extentY :: (InSpace v n a, R2 v, Enveloped a) => a > Maybe (n, n) #
Compute the absolute ycoordinate range of an enveloped object in
the form (lo,hi)
. Return Nothing
for objects with an empty
envelope.
Specifying size
mkSizeSpec2D :: Num n => Maybe n > Maybe n > SizeSpec V2 n #
Make a SizeSpec
from possiblyspecified width and height.
Textures
A Texture is either a color SC
, linear gradient LG
, or radial gradient RG
.
An object can have only one texture which is determined by the Last
semigroup structure.
Instances
Floating n => Transformable (Texture n) #  
Defined in Diagrams.TwoD.Attributes  
type V (Texture n) #  
Defined in Diagrams.TwoD.Attributes  
type N (Texture n) #  
Defined in Diagrams.TwoD.Attributes 
data SpreadMethod #
The SpreadMethod
determines what happens before lGradStart
and after
lGradEnd
. GradPad
fills the space before the start of the gradient
with the color of the first stop and the color after end of the gradient
with the color of the last stop. GradRepeat
restarts the gradient and
GradReflect
restarts the gradient with the stops in reverse order.
data GradientStop d #
A gradient stop contains a color and fraction (usually between 0 and 1)
GradientStop  

_FillTexture :: Iso' (FillTexture n) (Recommend (Texture n)) #
_fillTexture :: (Typeable n, Floating n) => Lens' (Style V2 n) (Texture n) #
Commit a fill texture in a style. This is not a valid setter
because it doesn't abide the functor law (see committed
).
getFillTexture :: FillTexture n > Texture n #
_LineTexture :: Iso (LineTexture n) (LineTexture n') (Texture n) (Texture n') #
lineTextureA :: (InSpace V2 n a, Typeable n, Floating n,