Copyright (C) 2008-2015 Edward Kmett BSD-style (see the file LICENSE) Edward Kmett experimental non-portable (fundeps, MPTCs) Safe Haskell2010

Description

Synopsis

Documentation

class Monad m => MonadFree f m | m -> f where #

Monads provide substitution (fmap) and renormalization (join):

m >>= f = join (fmap f m)

A free Monad is one that does no work during the normalization step beyond simply grafting the two monadic values together.

[] is not a free Monad (in this sense) because join [[a]] smashes the lists flat.

On the other hand, consider:

data Tree a = Bin (Tree a) (Tree a) | Tip a

instance Monad Tree where
return = Tip
Tip a >>= f = f a
Bin l r >>= f = Bin (l >>= f) (r >>= f)


This Monad is the free Monad of Pair:

data Pair a = Pair a a


And we could make an instance of MonadFree for it directly:

instance MonadFree Pair Tree where
wrap (Pair l r) = Bin l r


Or we could choose to program with Free Pair instead of Tree and thereby avoid having to define our own Monad instance.

Moreover, Control.Monad.Free.Church provides a MonadFree instance that can improve the asymptotic complexity of code that constructs free monads by effectively reassociating the use of (>>=). You may also want to take a look at the kan-extensions package (http://hackage.haskell.org/package/kan-extensions).

See Free for a more formal definition of the free Monad for a Functor.

Minimal complete definition

Nothing

Methods

wrap :: f (m a) -> m a #

wrap (fmap f x) ≡ wrap (fmap return x) >>= f


wrap :: (m ~ t n, MonadTrans t, MonadFree f n, Functor f) => f (m a) -> m a #

wrap (fmap f x) ≡ wrap (fmap return x) >>= f

Instances
Note: that this is the default implementation for wrap for MonadFree f (t m).