basement-0.0.2: Foundation scrap box of array & string

LicenseBSD-style
MaintainerVincent Hanquez <vincent@snarc.org>
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell2010

Basement.Compat.Base

Description

internal re-export of all the good base bits

Synopsis

Documentation

($) :: (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

    f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

($!) :: (a -> b) -> a -> b infixr 0 #

Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.

(&&) :: Bool -> Bool -> Bool infixr 3 #

Boolean "and"

(||) :: Bool -> Bool -> Bool infixr 2 #

Boolean "or"

(.) :: Category k cat => forall b c a. cat b c -> cat a b -> cat a c #

morphism composition

(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #

An infix synonym for fmap.

The name of this operator is an allusion to $. Note the similarities between their types:

 ($)  ::              (a -> b) ->   a ->   b
(<$>) :: Functor f => (a -> b) -> f a -> f b

Whereas $ is function application, <$> is function application lifted over a Functor.

Examples

Convert from a Maybe Int to a Maybe String using show:

>>> show <$> Nothing
Nothing
>>> show <$> Just 3
Just "3"

Convert from an Either Int Int to an Either Int String using show:

>>> show <$> Left 17
Left 17
>>> show <$> Right 17
Right "17"

Double each element of a list:

>>> (*2) <$> [1,2,3]
[2,4,6]

Apply even to the second element of a pair:

>>> even <$> (2,2)
(2,True)

not :: Bool -> Bool #

Boolean "not"

otherwise :: Bool #

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

fst :: (a, b) -> a #

Extract the first component of a pair.

snd :: (a, b) -> b #

Extract the second component of a pair.

id :: Category k cat => forall a. cat a a #

the identity morphism

maybe :: b -> (a -> b) -> Maybe a -> b #

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is Nothing, the function returns the default value. Otherwise, it applies the function to the value inside the Just and returns the result.

Examples

Basic usage:

>>> maybe False odd (Just 3)
True
>>> maybe False odd Nothing
False

Read an integer from a string using readMaybe. If we succeed, return twice the integer; that is, apply (*2) to it. If instead we fail to parse an integer, return 0 by default:

>>> import Text.Read ( readMaybe )
>>> maybe 0 (*2) (readMaybe "5")
10
>>> maybe 0 (*2) (readMaybe "")
0

Apply show to a Maybe Int. If we have Just n, we want to show the underlying Int n. But if we have Nothing, we return the empty string instead of (for example) "Nothing":

>>> maybe "" show (Just 5)
"5"
>>> maybe "" show Nothing
""

either :: (a -> c) -> (b -> c) -> Either a b -> c #

Case analysis for the Either type. If the value is Left a, apply the first function to a; if it is Right b, apply the second function to b.

Examples

We create two values of type Either String Int, one using the Left constructor and another using the Right constructor. Then we apply "either" the length function (if we have a String) or the "times-two" function (if we have an Int):

>>> let s = Left "foo" :: Either String Int
>>> let n = Right 3 :: Either String Int
>>> either length (*2) s
3
>>> either length (*2) n
6

flip :: (a -> b -> c) -> b -> a -> c #

flip f takes its (first) two arguments in the reverse order of f.

const :: a -> b -> a #

const x is a unary function which evaluates to x for all inputs.

For instance,

>>> map (const 42) [0..3]
[42,42,42,42]

error :: HasCallStack => [Char] -> a #

error stops execution and displays an error message.

and :: Foldable t => t Bool -> Bool #

and returns the conjunction of a container of Bools. For the result to be True, the container must be finite; False, however, results from a False value finitely far from the left end.

undefined :: HasCallStack => a #

A special case of error. It is expected that compilers will recognize this and insert error messages which are more appropriate to the context in which undefined appears.

seq :: a -> b -> b #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

class Show a where #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec :: Int -> a -> ShowS #

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS #

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Show Char 

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Show Int 

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Show Int8 

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Show Int16 

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Show Int32 

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Show Int64 

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Show Integer 
Show Ordering 
Show Word 

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Show Word8 

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Show Word16 
Show Word32 
Show Word64 
Show CallStack 
Show TypeRep 
Show () 

Methods

showsPrec :: Int -> () -> ShowS #

show :: () -> String #

showList :: [()] -> ShowS #

Show TyCon 

Methods

showsPrec :: Int -> TyCon -> ShowS #

show :: TyCon -> String #

showList :: [TyCon] -> ShowS #

Show Module 
Show TrName 
Show Natural 
Show Void 

Methods

showsPrec :: Int -> Void -> ShowS #

show :: Void -> String #

showList :: [Void] -> ShowS #

Show DataType 
Show Constr 
Show DataRep 
Show ConstrRep 
Show Fixity 
Show Version 
Show CDev 

Methods

showsPrec :: Int -> CDev -> ShowS #

show :: CDev -> String #

showList :: [CDev] -> ShowS #

Show CIno 

Methods

showsPrec :: Int -> CIno -> ShowS #

show :: CIno -> String #

showList :: [CIno] -> ShowS #

Show CMode 

Methods

showsPrec :: Int -> CMode -> ShowS #

show :: CMode -> String #

showList :: [CMode] -> ShowS #

Show COff 

Methods

showsPrec :: Int -> COff -> ShowS #

show :: COff -> String #

showList :: [COff] -> ShowS #

Show CPid 

Methods

showsPrec :: Int -> CPid -> ShowS #

show :: CPid -> String #

showList :: [CPid] -> ShowS #

Show CSsize 
Show CGid 

Methods

showsPrec :: Int -> CGid -> ShowS #

show :: CGid -> String #

showList :: [CGid] -> ShowS #

Show CNlink 
Show CUid 

Methods

showsPrec :: Int -> CUid -> ShowS #

show :: CUid -> String #

showList :: [CUid] -> ShowS #

Show CCc 

Methods

showsPrec :: Int -> CCc -> ShowS #

show :: CCc -> String #

showList :: [CCc] -> ShowS #

Show CSpeed 
Show CTcflag 
Show CRLim 

Methods

showsPrec :: Int -> CRLim -> ShowS #

show :: CRLim -> String #

showList :: [CRLim] -> ShowS #

Show Fd 

Methods

showsPrec :: Int -> Fd -> ShowS #

show :: Fd -> String #

showList :: [Fd] -> ShowS #

Show BlockedIndefinitelyOnMVar 
Show BlockedIndefinitelyOnSTM 
Show Deadlock 
Show AllocationLimitExceeded 
Show AssertionFailed 
Show SomeAsyncException 
Show AsyncException 
Show ArrayException 
Show ExitCode 
Show IOErrorType 
Show WordPtr 
Show IntPtr 
Show CChar 

Methods

showsPrec :: Int -> CChar -> ShowS #

show :: CChar -> String #

showList :: [CChar] -> ShowS #

Show CSChar 
Show CUChar 
Show CShort 
Show CUShort 
Show CInt 

Methods

showsPrec :: Int -> CInt -> ShowS #

show :: CInt -> String #

showList :: [CInt] -> ShowS #

Show CUInt 

Methods

showsPrec :: Int -> CUInt -> ShowS #

show :: CUInt -> String #

showList :: [CUInt] -> ShowS #

Show CLong 

Methods

showsPrec :: Int -> CLong -> ShowS #

show :: CLong -> String #

showList :: [CLong] -> ShowS #

Show CULong 
Show CLLong 
Show CULLong 
Show CFloat 
Show CDouble 
Show CPtrdiff 
Show CSize 

Methods

showsPrec :: Int -> CSize -> ShowS #

show :: CSize -> String #

showList :: [CSize] -> ShowS #

Show CWchar 
Show CSigAtomic 
Show CClock 
Show CTime 

Methods

showsPrec :: Int -> CTime -> ShowS #

show :: CTime -> String #

showList :: [CTime] -> ShowS #

Show CUSeconds 
Show CSUSeconds 
Show CIntPtr 
Show CUIntPtr 
Show CIntMax 
Show CUIntMax 
Show All 

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Show Any 

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Show Fixity 
Show Associativity 
Show SourceUnpackedness 
Show SourceStrictness 
Show DecidedStrictness 
Show MaskingState 
Show IOException 
Show ErrorCall 
Show ArithException 
Show SomeNat 
Show SomeSymbol 
Show GeneralCategory 
Show SomeException 
Show SrcLoc 
Show Endianness # 
Show Char7 # 

Methods

showsPrec :: Int -> Char7 -> ShowS #

show :: Char7 -> String #

showList :: [Char7] -> ShowS #

Show Word128 # 
Show Word256 # 
Show FileSize # 
Show NonEmptyCollectionIsEmpty # 
Show InvalidRecast # 
Show RecastDestinationSize # 
Show RecastSourceSize # 
Show OutOfBound # 
Show OutOfBoundOperation # 
Show ValidationFailure # 
Show AsciiString # 
Show String # 
Show Encoding # 
Show a => Show [a] 

Methods

showsPrec :: Int -> [a] -> ShowS #

show :: [a] -> String #

showList :: [[a]] -> ShowS #

Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Show a => Show (Ratio a) 

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Show (Ptr a) 

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Show (FunPtr a) 

Methods

showsPrec :: Int -> FunPtr a -> ShowS #

show :: FunPtr a -> String #

showList :: [FunPtr a] -> ShowS #

Show (V1 p) 

Methods

showsPrec :: Int -> V1 p -> ShowS #

show :: V1 p -> String #

showList :: [V1 p] -> ShowS #

Show (U1 p) 

Methods

showsPrec :: Int -> U1 p -> ShowS #

show :: U1 p -> String #

showList :: [U1 p] -> ShowS #

Show p => Show (Par1 p) 

Methods

showsPrec :: Int -> Par1 p -> ShowS #

show :: Par1 p -> String #

showList :: [Par1 p] -> ShowS #

Show a => Show (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Methods

showsPrec :: Int -> Identity a -> ShowS #

show :: Identity a -> String #

showList :: [Identity a] -> ShowS #

Show a => Show (Min a) 

Methods

showsPrec :: Int -> Min a -> ShowS #

show :: Min a -> String #

showList :: [Min a] -> ShowS #

Show a => Show (Max a) 

Methods

showsPrec :: Int -> Max a -> ShowS #

show :: Max a -> String #

showList :: [Max a] -> ShowS #

Show a => Show (First a) 

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a) 

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show m => Show (WrappedMonoid m) 
Show a => Show (Option a) 

Methods

showsPrec :: Int -> Option a -> ShowS #

show :: Option a -> String #

showList :: [Option a] -> ShowS #

Show a => Show (NonEmpty a) 

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Show a => Show (ZipList a) 

Methods

showsPrec :: Int -> ZipList a -> ShowS #

show :: ZipList a -> String #

showList :: [ZipList a] -> ShowS #

Show (ForeignPtr a) 
Show a => Show (Dual a) 

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Show a => Show (Sum a) 

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Show a => Show (Product a) 

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Show a => Show (First a) 

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a) 

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show a => Show (BE a) # 

Methods

showsPrec :: Int -> BE a -> ShowS #

show :: BE a -> String #

showList :: [BE a] -> ShowS #

Show a => Show (LE a) # 

Methods

showsPrec :: Int -> LE a -> ShowS #

show :: LE a -> String #

showList :: [LE a] -> ShowS #

Show (FinalPtr a) # 

Methods

showsPrec :: Int -> FinalPtr a -> ShowS #

show :: FinalPtr a -> String #

showList :: [FinalPtr a] -> ShowS #

Show (CountOf ty) # 

Methods

showsPrec :: Int -> CountOf ty -> ShowS #

show :: CountOf ty -> String #

showList :: [CountOf ty] -> ShowS #

Show (Offset ty) # 

Methods

showsPrec :: Int -> Offset ty -> ShowS #

show :: Offset ty -> String #

showList :: [Offset ty] -> ShowS #

Show a => Show (NonEmpty a) # 

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Show (Zn n) # 

Methods

showsPrec :: Int -> Zn n -> ShowS #

show :: Zn n -> String #

showList :: [Zn n] -> ShowS #

Show (Zn64 n) # 

Methods

showsPrec :: Int -> Zn64 n -> ShowS #

show :: Zn64 n -> String #

showList :: [Zn64 n] -> ShowS #

(PrimType ty, Show ty) => Show (Block ty) # 

Methods

showsPrec :: Int -> Block ty -> ShowS #

show :: Block ty -> String #

showList :: [Block ty] -> ShowS #

(PrimType ty, Show ty) => Show (UArray ty) # 

Methods

showsPrec :: Int -> UArray ty -> ShowS #

show :: UArray ty -> String #

showList :: [UArray ty] -> ShowS #

Show a => Show (Array a) # 

Methods

showsPrec :: Int -> Array a -> ShowS #

show :: Array a -> String #

showList :: [Array a] -> ShowS #

(Show b, Show a) => Show (Either a b) 

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Show (f p) => Show (Rec1 f p) 

Methods

showsPrec :: Int -> Rec1 f p -> ShowS #

show :: Rec1 f p -> String #

showList :: [Rec1 f p] -> ShowS #

Show (URec Char p) 

Methods

showsPrec :: Int -> URec Char p -> ShowS #

show :: URec Char p -> String #

showList :: [URec Char p] -> ShowS #

Show (URec Double p) 

Methods

showsPrec :: Int -> URec Double p -> ShowS #

show :: URec Double p -> String #

showList :: [URec Double p] -> ShowS #

Show (URec Float p) 

Methods

showsPrec :: Int -> URec Float p -> ShowS #

show :: URec Float p -> String #

showList :: [URec Float p] -> ShowS #

Show (URec Int p) 

Methods

showsPrec :: Int -> URec Int p -> ShowS #

show :: URec Int p -> String #

showList :: [URec Int p] -> ShowS #

Show (URec Word p) 

Methods

showsPrec :: Int -> URec Word p -> ShowS #

show :: URec Word p -> String #

showList :: [URec Word p] -> ShowS #

(Show a, Show b) => Show (a, b) 

Methods

showsPrec :: Int -> (a, b) -> ShowS #

show :: (a, b) -> String #

showList :: [(a, b)] -> ShowS #

(Show b, Show a) => Show (Arg a b) 

Methods

showsPrec :: Int -> Arg a b -> ShowS #

show :: Arg a b -> String #

showList :: [Arg a b] -> ShowS #

Show (Proxy k s) 

Methods

showsPrec :: Int -> Proxy k s -> ShowS #

show :: Proxy k s -> String #

showList :: [Proxy k s] -> ShowS #

Show (ST s a) 

Methods

showsPrec :: Int -> ST s a -> ShowS #

show :: ST s a -> String #

showList :: [ST s a] -> ShowS #

(Show b, Show a) => Show (These a b) # 

Methods

showsPrec :: Int -> These a b -> ShowS #

show :: These a b -> String #

showList :: [These a b] -> ShowS #

(Show a, PrimType a) => Show (BlockN n a) # 

Methods

showsPrec :: Int -> BlockN n a -> ShowS #

show :: BlockN n a -> String #

showList :: [BlockN n a] -> ShowS #

Show c => Show (K1 i c p) 

Methods

showsPrec :: Int -> K1 i c p -> ShowS #

show :: K1 i c p -> String #

showList :: [K1 i c p] -> ShowS #

(Show (g p), Show (f p)) => Show ((:+:) f g p) 

Methods

showsPrec :: Int -> (f :+: g) p -> ShowS #

show :: (f :+: g) p -> String #

showList :: [(f :+: g) p] -> ShowS #

(Show (g p), Show (f p)) => Show ((:*:) f g p) 

Methods

showsPrec :: Int -> (f :*: g) p -> ShowS #

show :: (f :*: g) p -> String #

showList :: [(f :*: g) p] -> ShowS #

Show (f (g p)) => Show ((:.:) f g p) 

Methods

showsPrec :: Int -> (f :.: g) p -> ShowS #

show :: (f :.: g) p -> String #

showList :: [(f :.: g) p] -> ShowS #

(Show a, Show b, Show c) => Show (a, b, c) 

Methods

showsPrec :: Int -> (a, b, c) -> ShowS #

show :: (a, b, c) -> String #

showList :: [(a, b, c)] -> ShowS #

Show a => Show (Const k a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Methods

showsPrec :: Int -> Const k a b -> ShowS #

show :: Const k a b -> String #

showList :: [Const k a b] -> ShowS #

Show (f a) => Show (Alt k f a) 

Methods

showsPrec :: Int -> Alt k f a -> ShowS #

show :: Alt k f a -> String #

showList :: [Alt k f a] -> ShowS #

Show ((:~:) k a b) 

Methods

showsPrec :: Int -> (k :~: a) b -> ShowS #

show :: (k :~: a) b -> String #

showList :: [(k :~: a) b] -> ShowS #

Show (f p) => Show (M1 i c f p) 

Methods

showsPrec :: Int -> M1 i c f p -> ShowS #

show :: M1 i c f p -> String #

showList :: [M1 i c f p] -> ShowS #

(Show a, Show b, Show c, Show d) => Show (a, b, c, d) 

Methods

showsPrec :: Int -> (a, b, c, d) -> ShowS #

show :: (a, b, c, d) -> String #

showList :: [(a, b, c, d)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) 

Methods

showsPrec :: Int -> (a, b, c, d, e) -> ShowS #

show :: (a, b, c, d, e) -> String #

showList :: [(a, b, c, d, e)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f) -> ShowS #

show :: (a, b, c, d, e, f) -> String #

showList :: [(a, b, c, d, e, f)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g) -> ShowS #

show :: (a, b, c, d, e, f, g) -> String #

showList :: [(a, b, c, d, e, f, g)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h) -> ShowS #

show :: (a, b, c, d, e, f, g, h) -> String #

showList :: [(a, b, c, d, e, f, g, h)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i) -> String #

showList :: [(a, b, c, d, e, f, g, h, i)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] -> ShowS #

class Eq a => Ord a where #

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.

Minimal complete definition

compare | (<=)

Methods

compare :: a -> a -> Ordering #

(<) :: a -> a -> Bool infix 4 #

(<=) :: a -> a -> Bool infix 4 #

(>) :: a -> a -> Bool infix 4 #

(>=) :: a -> a -> Bool infix 4 #

max :: a -> a -> a #

min :: a -> a -> a #

Instances

Ord Bool 

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Ord Char 

Methods

compare :: Char -> Char -> Ordering #

(<) :: Char -> Char -> Bool #

(<=) :: Char -> Char -> Bool #

(>) :: Char -> Char -> Bool #

(>=) :: Char -> Char -> Bool #

max :: Char -> Char -> Char #

min :: Char -> Char -> Char #

Ord Double 
Ord Float 

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Ord Int 

Methods

compare :: Int -> Int -> Ordering #

(<) :: Int -> Int -> Bool #

(<=) :: Int -> Int -> Bool #

(>) :: Int -> Int -> Bool #

(>=) :: Int -> Int -> Bool #

max :: Int -> Int -> Int #

min :: Int -> Int -> Int #

Ord Int8 

Methods

compare :: Int8 -> Int8 -> Ordering #

(<) :: Int8 -> Int8 -> Bool #

(<=) :: Int8 -> Int8 -> Bool #

(>) :: Int8 -> Int8 -> Bool #

(>=) :: Int8 -> Int8 -> Bool #

max :: Int8 -> Int8 -> Int8 #

min :: Int8 -> Int8 -> Int8 #

Ord Int16 

Methods

compare :: Int16 -> Int16 -> Ordering #

(<) :: Int16 -> Int16 -> Bool #

(<=) :: Int16 -> Int16 -> Bool #

(>) :: Int16 -> Int16 -> Bool #

(>=) :: Int16 -> Int16 -> Bool #

max :: Int16 -> Int16 -> Int16 #

min :: Int16 -> Int16 -> Int16 #

Ord Int32 

Methods

compare :: Int32 -> Int32 -> Ordering #

(<) :: Int32 -> Int32 -> Bool #

(<=) :: Int32 -> Int32 -> Bool #

(>) :: Int32 -> Int32 -> Bool #

(>=) :: Int32 -> Int32 -> Bool #

max :: Int32 -> Int32 -> Int32 #

min :: Int32 -> Int32 -> Int32 #

Ord Int64 

Methods

compare :: Int64 -> Int64 -> Ordering #

(<) :: Int64 -> Int64 -> Bool #

(<=) :: Int64 -> Int64 -> Bool #

(>) :: Int64 -> Int64 -> Bool #

(>=) :: Int64 -> Int64 -> Bool #

max :: Int64 -> Int64 -> Int64 #

min :: Int64 -> Int64 -> Int64 #

Ord Integer 
Ord Ordering 
Ord Word 

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Ord Word8 

Methods

compare :: Word8 -> Word8 -> Ordering #

(<) :: Word8 -> Word8 -> Bool #

(<=) :: Word8 -> Word8 -> Bool #

(>) :: Word8 -> Word8 -> Bool #

(>=) :: Word8 -> Word8 -> Bool #

max :: Word8 -> Word8 -> Word8 #

min :: Word8 -> Word8 -> Word8 #

Ord Word16 
Ord Word32 
Ord Word64 
Ord TypeRep 
Ord () 

Methods

compare :: () -> () -> Ordering #

(<) :: () -> () -> Bool #

(<=) :: () -> () -> Bool #

(>) :: () -> () -> Bool #

(>=) :: () -> () -> Bool #

max :: () -> () -> () #

min :: () -> () -> () #

Ord TyCon 

Methods

compare :: TyCon -> TyCon -> Ordering #

(<) :: TyCon -> TyCon -> Bool #

(<=) :: TyCon -> TyCon -> Bool #

(>) :: TyCon -> TyCon -> Bool #

(>=) :: TyCon -> TyCon -> Bool #

max :: TyCon -> TyCon -> TyCon #

min :: TyCon -> TyCon -> TyCon #

Ord BigNat 
Ord Natural 
Ord Void 

Methods

compare :: Void -> Void -> Ordering #

(<) :: Void -> Void -> Bool #

(<=) :: Void -> Void -> Bool #

(>) :: Void -> Void -> Bool #

(>=) :: Void -> Void -> Bool #

max :: Void -> Void -> Void #

min :: Void -> Void -> Void #

Ord Version 
Ord CDev 

Methods

compare :: CDev -> CDev -> Ordering #

(<) :: CDev -> CDev -> Bool #

(<=) :: CDev -> CDev -> Bool #

(>) :: CDev -> CDev -> Bool #

(>=) :: CDev -> CDev -> Bool #

max :: CDev -> CDev -> CDev #

min :: CDev -> CDev -> CDev #

Ord CIno 

Methods

compare :: CIno -> CIno -> Ordering #

(<) :: CIno -> CIno -> Bool #

(<=) :: CIno -> CIno -> Bool #

(>) :: CIno -> CIno -> Bool #

(>=) :: CIno -> CIno -> Bool #

max :: CIno -> CIno -> CIno #

min :: CIno -> CIno -> CIno #

Ord CMode 

Methods

compare :: CMode -> CMode -> Ordering #

(<) :: CMode -> CMode -> Bool #

(<=) :: CMode -> CMode -> Bool #

(>) :: CMode -> CMode -> Bool #

(>=) :: CMode -> CMode -> Bool #

max :: CMode -> CMode -> CMode #

min :: CMode -> CMode -> CMode #

Ord COff 

Methods

compare :: COff -> COff -> Ordering #

(<) :: COff -> COff -> Bool #

(<=) :: COff -> COff -> Bool #

(>) :: COff -> COff -> Bool #

(>=) :: COff -> COff -> Bool #

max :: COff -> COff -> COff #

min :: COff -> COff -> COff #

Ord CPid 

Methods

compare :: CPid -> CPid -> Ordering #

(<) :: CPid -> CPid -> Bool #

(<=) :: CPid -> CPid -> Bool #

(>) :: CPid -> CPid -> Bool #

(>=) :: CPid -> CPid -> Bool #

max :: CPid -> CPid -> CPid #

min :: CPid -> CPid -> CPid #

Ord CSsize 
Ord CGid 

Methods

compare :: CGid -> CGid -> Ordering #

(<) :: CGid -> CGid -> Bool #

(<=) :: CGid -> CGid -> Bool #

(>) :: CGid -> CGid -> Bool #

(>=) :: CGid -> CGid -> Bool #

max :: CGid -> CGid -> CGid #

min :: CGid -> CGid -> CGid #

Ord CNlink 
Ord CUid 

Methods

compare :: CUid -> CUid -> Ordering #

(<) :: CUid -> CUid -> Bool #

(<=) :: CUid -> CUid -> Bool #

(>) :: CUid -> CUid -> Bool #

(>=) :: CUid -> CUid -> Bool #

max :: CUid -> CUid -> CUid #

min :: CUid -> CUid -> CUid #

Ord CCc 

Methods

compare :: CCc -> CCc -> Ordering #

(<) :: CCc -> CCc -> Bool #

(<=) :: CCc -> CCc -> Bool #

(>) :: CCc -> CCc -> Bool #

(>=) :: CCc -> CCc -> Bool #

max :: CCc -> CCc -> CCc #

min :: CCc -> CCc -> CCc #

Ord CSpeed 
Ord CTcflag 
Ord CRLim 

Methods

compare :: CRLim -> CRLim -> Ordering #

(<) :: CRLim -> CRLim -> Bool #

(<=) :: CRLim -> CRLim -> Bool #

(>) :: CRLim -> CRLim -> Bool #

(>=) :: CRLim -> CRLim -> Bool #

max :: CRLim -> CRLim -> CRLim #

min :: CRLim -> CRLim -> CRLim #

Ord Fd 

Methods

compare :: Fd -> Fd -> Ordering #

(<) :: Fd -> Fd -> Bool #

(<=) :: Fd -> Fd -> Bool #

(>) :: Fd -> Fd -> Bool #

(>=) :: Fd -> Fd -> Bool #

max :: Fd -> Fd -> Fd #

min :: Fd -> Fd -> Fd #

Ord AsyncException 
Ord ArrayException 
Ord ExitCode 
Ord WordPtr 
Ord IntPtr 
Ord CChar 

Methods

compare :: CChar -> CChar -> Ordering #

(<) :: CChar -> CChar -> Bool #

(<=) :: CChar -> CChar -> Bool #

(>) :: CChar -> CChar -> Bool #

(>=) :: CChar -> CChar -> Bool #

max :: CChar -> CChar -> CChar #

min :: CChar -> CChar -> CChar #

Ord CSChar 
Ord CUChar 
Ord CShort 
Ord CUShort 
Ord CInt 

Methods

compare :: CInt -> CInt -> Ordering #

(<) :: CInt -> CInt -> Bool #

(<=) :: CInt -> CInt -> Bool #

(>) :: CInt -> CInt -> Bool #

(>=) :: CInt -> CInt -> Bool #

max :: CInt -> CInt -> CInt #

min :: CInt -> CInt -> CInt #

Ord CUInt 

Methods

compare :: CUInt -> CUInt -> Ordering #

(<) :: CUInt -> CUInt -> Bool #

(<=) :: CUInt -> CUInt -> Bool #

(>) :: CUInt -> CUInt -> Bool #

(>=) :: CUInt -> CUInt -> Bool #

max :: CUInt -> CUInt -> CUInt #

min :: CUInt -> CUInt -> CUInt #

Ord CLong 

Methods

compare :: CLong -> CLong -> Ordering #

(<) :: CLong -> CLong -> Bool #

(<=) :: CLong -> CLong -> Bool #

(>) :: CLong -> CLong -> Bool #

(>=) :: CLong -> CLong -> Bool #

max :: CLong -> CLong -> CLong #

min :: CLong -> CLong -> CLong #

Ord CULong 
Ord CLLong 
Ord CULLong 
Ord CFloat 
Ord CDouble 
Ord CPtrdiff 
Ord CSize 

Methods

compare :: CSize -> CSize -> Ordering #

(<) :: CSize -> CSize -> Bool #

(<=) :: CSize -> CSize -> Bool #

(>) :: CSize -> CSize -> Bool #

(>=) :: CSize -> CSize -> Bool #

max :: CSize -> CSize -> CSize #

min :: CSize -> CSize -> CSize #

Ord CWchar 
Ord CSigAtomic 
Ord CClock 
Ord CTime 

Methods

compare :: CTime -> CTime -> Ordering #

(<) :: CTime -> CTime -> Bool #

(<=) :: CTime -> CTime -> Bool #

(>) :: CTime -> CTime -> Bool #

(>=) :: CTime -> CTime -> Bool #

max :: CTime -> CTime -> CTime #

min :: CTime -> CTime -> CTime #

Ord CUSeconds 
Ord CSUSeconds 
Ord CIntPtr 
Ord CUIntPtr 
Ord CIntMax 
Ord CUIntMax 
Ord All 

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

Ord Any 

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

Ord Fixity 
Ord Associativity 
Ord SourceUnpackedness 
Ord SourceStrictness 
Ord DecidedStrictness 
Ord ErrorCall 
Ord ArithException 
Ord SomeNat 
Ord SomeSymbol 
Ord GeneralCategory 
Ord Char7 # 

Methods

compare :: Char7 -> Char7 -> Ordering #

(<) :: Char7 -> Char7 -> Bool #

(<=) :: Char7 -> Char7 -> Bool #

(>) :: Char7 -> Char7 -> Bool #

(>=) :: Char7 -> Char7 -> Bool #

max :: Char7 -> Char7 -> Char7 #

min :: Char7 -> Char7 -> Char7 #

Ord Word128 # 
Ord Word256 # 
Ord FileSize # 
Ord Addr # 

Methods

compare :: Addr -> Addr -> Ordering #

(<) :: Addr -> Addr -> Bool #

(<=) :: Addr -> Addr -> Bool #

(>) :: Addr -> Addr -> Bool #

(>=) :: Addr -> Addr -> Bool #

max :: Addr -> Addr -> Addr #

min :: Addr -> Addr -> Addr #

Ord AsciiString # 
Ord String # 
Ord Encoding # 
Ord a => Ord [a] 

Methods

compare :: [a] -> [a] -> Ordering #

(<) :: [a] -> [a] -> Bool #

(<=) :: [a] -> [a] -> Bool #

(>) :: [a] -> [a] -> Bool #

(>=) :: [a] -> [a] -> Bool #

max :: [a] -> [a] -> [a] #

min :: [a] -> [a] -> [a] #

Ord a => Ord (Maybe a) 

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Integral a => Ord (Ratio a) 

Methods

compare :: Ratio a -> Ratio a -> Ordering #

(<) :: Ratio a -> Ratio a -> Bool #

(<=) :: Ratio a -> Ratio a -> Bool #

(>) :: Ratio a -> Ratio a -> Bool #

(>=) :: Ratio a -> Ratio a -> Bool #

max :: Ratio a -> Ratio a -> Ratio a #

min :: Ratio a -> Ratio a -> Ratio a #

Ord (Ptr a) 

Methods

compare :: Ptr a -> Ptr a -> Ordering #

(<) :: Ptr a -> Ptr a -> Bool #

(<=) :: Ptr a -> Ptr a -> Bool #

(>) :: Ptr a -> Ptr a -> Bool #

(>=) :: Ptr a -> Ptr a -> Bool #

max :: Ptr a -> Ptr a -> Ptr a #

min :: Ptr a -> Ptr a -> Ptr a #

Ord (FunPtr a) 

Methods

compare :: FunPtr a -> FunPtr a -> Ordering #

(<) :: FunPtr a -> FunPtr a -> Bool #

(<=) :: FunPtr a -> FunPtr a -> Bool #

(>) :: FunPtr a -> FunPtr a -> Bool #

(>=) :: FunPtr a -> FunPtr a -> Bool #

max :: FunPtr a -> FunPtr a -> FunPtr a #

min :: FunPtr a -> FunPtr a -> FunPtr a #

Ord (V1 p) 

Methods

compare :: V1 p -> V1 p -> Ordering #

(<) :: V1 p -> V1 p -> Bool #

(<=) :: V1 p -> V1 p -> Bool #

(>) :: V1 p -> V1 p -> Bool #

(>=) :: V1 p -> V1 p -> Bool #

max :: V1 p -> V1 p -> V1 p #

min :: V1 p -> V1 p -> V1 p #

Ord (U1 p) 

Methods

compare :: U1 p -> U1 p -> Ordering #

(<) :: U1 p -> U1 p -> Bool #

(<=) :: U1 p -> U1 p -> Bool #

(>) :: U1 p -> U1 p -> Bool #

(>=) :: U1 p -> U1 p -> Bool #

max :: U1 p -> U1 p -> U1 p #

min :: U1 p -> U1 p -> U1 p #

Ord p => Ord (Par1 p) 

Methods

compare :: Par1 p -> Par1 p -> Ordering #

(<) :: Par1 p -> Par1 p -> Bool #

(<=) :: Par1 p -> Par1 p -> Bool #

(>) :: Par1 p -> Par1 p -> Bool #

(>=) :: Par1 p -> Par1 p -> Bool #

max :: Par1 p -> Par1 p -> Par1 p #

min :: Par1 p -> Par1 p -> Par1 p #

Ord a => Ord (Identity a) 

Methods

compare :: Identity a -> Identity a -> Ordering #

(<) :: Identity a -> Identity a -> Bool #

(<=) :: Identity a -> Identity a -> Bool #

(>) :: Identity a -> Identity a -> Bool #

(>=) :: Identity a -> Identity a -> Bool #

max :: Identity a -> Identity a -> Identity a #

min :: Identity a -> Identity a -> Identity a #

Ord a => Ord (Min a) 

Methods

compare :: Min a -> Min a -> Ordering #

(<) :: Min a -> Min a -> Bool #

(<=) :: Min a -> Min a -> Bool #

(>) :: Min a -> Min a -> Bool #

(>=) :: Min a -> Min a -> Bool #

max :: Min a -> Min a -> Min a #

min :: Min a -> Min a -> Min a #

Ord a => Ord (Max a) 

Methods

compare :: Max a -> Max a -> Ordering #

(<) :: Max a -> Max a -> Bool #

(<=) :: Max a -> Max a -> Bool #

(>) :: Max a -> Max a -> Bool #

(>=) :: Max a -> Max a -> Bool #

max :: Max a -> Max a -> Max a #

min :: Max a -> Max a -> Max a #

Ord a => Ord (First a) 

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Ord a => Ord (Last a) 

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Ord m => Ord (WrappedMonoid m) 
Ord a => Ord (Option a) 

Methods

compare :: Option a -> Option a -> Ordering #

(<) :: Option a -> Option a -> Bool #

(<=) :: Option a -> Option a -> Bool #

(>) :: Option a -> Option a -> Bool #

(>=) :: Option a -> Option a -> Bool #

max :: Option a -> Option a -> Option a #

min :: Option a -> Option a -> Option a #

Ord a => Ord (NonEmpty a) 

Methods

compare :: NonEmpty a -> NonEmpty a -> Ordering #

(<) :: NonEmpty a -> NonEmpty a -> Bool #

(<=) :: NonEmpty a -> NonEmpty a -> Bool #

(>) :: NonEmpty a -> NonEmpty a -> Bool #

(>=) :: NonEmpty a -> NonEmpty a -> Bool #

max :: NonEmpty a -> NonEmpty a -> NonEmpty a #

min :: NonEmpty a -> NonEmpty a -> NonEmpty a #

Ord a => Ord (ZipList a) 

Methods

compare :: ZipList a -> ZipList a -> Ordering #

(<) :: ZipList a -> ZipList a -> Bool #

(<=) :: ZipList a -> ZipList a -> Bool #

(>) :: ZipList a -> ZipList a -> Bool #

(>=) :: ZipList a -> ZipList a -> Bool #

max :: ZipList a -> ZipList a -> ZipList a #

min :: ZipList a -> ZipList a -> ZipList a #

Ord (ForeignPtr a) 
Ord a => Ord (Dual a) 

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

Ord a => Ord (Sum a) 

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

Ord a => Ord (Product a) 

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

Ord a => Ord (First a) 

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Ord a => Ord (Last a) 

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

(ByteSwap a, Ord a) => Ord (BE a) # 

Methods

compare :: BE a -> BE a -> Ordering #

(<) :: BE a -> BE a -> Bool #

(<=) :: BE a -> BE a -> Bool #

(>) :: BE a -> BE a -> Bool #

(>=) :: BE a -> BE a -> Bool #

max :: BE a -> BE a -> BE a #

min :: BE a -> BE a -> BE a #

(ByteSwap a, Ord a) => Ord (LE a) # 

Methods

compare :: LE a -> LE a -> Ordering #

(<) :: LE a -> LE a -> Bool #

(<=) :: LE a -> LE a -> Bool #

(>) :: LE a -> LE a -> Bool #

(>=) :: LE a -> LE a -> Bool #

max :: LE a -> LE a -> LE a #

min :: LE a -> LE a -> LE a #

Ord (FinalPtr a) # 

Methods

compare :: FinalPtr a -> FinalPtr a -> Ordering #

(<) :: FinalPtr a -> FinalPtr a -> Bool #

(<=) :: FinalPtr a -> FinalPtr a -> Bool #

(>) :: FinalPtr a -> FinalPtr a -> Bool #

(>=) :: FinalPtr a -> FinalPtr a -> Bool #

max :: FinalPtr a -> FinalPtr a -> FinalPtr a #

min :: FinalPtr a -> FinalPtr a -> FinalPtr a #

Ord (CountOf ty) # 

Methods

compare :: CountOf ty -> CountOf ty -> Ordering #

(<) :: CountOf ty -> CountOf ty -> Bool #

(<=) :: CountOf ty -> CountOf ty -> Bool #

(>) :: CountOf ty -> CountOf ty -> Bool #

(>=) :: CountOf ty -> CountOf ty -> Bool #

max :: CountOf ty -> CountOf ty -> CountOf ty #

min :: CountOf ty -> CountOf ty -> CountOf ty #

Ord (Offset ty) # 

Methods

compare :: Offset ty -> Offset ty -> Ordering #

(<) :: Offset ty -> Offset ty -> Bool #

(<=) :: Offset ty -> Offset ty -> Bool #

(>) :: Offset ty -> Offset ty -> Bool #

(>=) :: Offset ty -> Offset ty -> Bool #

max :: Offset ty -> Offset ty -> Offset ty #

min :: Offset ty -> Offset ty -> Offset ty #

Ord (Zn n) # 

Methods

compare :: Zn n -> Zn n -> Ordering #

(<) :: Zn n -> Zn n -> Bool #

(<=) :: Zn n -> Zn n -> Bool #

(>) :: Zn n -> Zn n -> Bool #

(>=) :: Zn n -> Zn n -> Bool #

max :: Zn n -> Zn n -> Zn n #

min :: Zn n -> Zn n -> Zn n #

Ord (Zn64 n) # 

Methods

compare :: Zn64 n -> Zn64 n -> Ordering #

(<) :: Zn64 n -> Zn64 n -> Bool #

(<=) :: Zn64 n -> Zn64 n -> Bool #

(>) :: Zn64 n -> Zn64 n -> Bool #

(>=) :: Zn64 n -> Zn64 n -> Bool #

max :: Zn64 n -> Zn64 n -> Zn64 n #

min :: Zn64 n -> Zn64 n -> Zn64 n #

(PrimType ty, Ord ty) => Ord (Block ty) # 

Methods

compare :: Block ty -> Block ty -> Ordering #

(<) :: Block ty -> Block ty -> Bool #

(<=) :: Block ty -> Block ty -> Bool #

(>) :: Block ty -> Block ty -> Bool #

(>=) :: Block ty -> Block ty -> Bool #

max :: Block ty -> Block ty -> Block ty #

min :: Block ty -> Block ty -> Block ty #

(PrimType ty, Ord ty) => Ord (UArray ty) # 

Methods

compare :: UArray ty -> UArray ty -> Ordering #

(<) :: UArray ty -> UArray ty -> Bool #

(<=) :: UArray ty -> UArray ty -> Bool #

(>) :: UArray ty -> UArray ty -> Bool #

(>=) :: UArray ty -> UArray ty -> Bool #

max :: UArray ty -> UArray ty -> UArray ty #

min :: UArray ty -> UArray ty -> UArray ty #

Ord a => Ord (Array a) # 

Methods

compare :: Array a -> Array a -> Ordering #

(<) :: Array a -> Array a -> Bool #

(<=) :: Array a -> Array a -> Bool #

(>) :: Array a -> Array a -> Bool #

(>=) :: Array a -> Array a -> Bool #

max :: Array a -> Array a -> Array a #

min :: Array a -> Array a -> Array a #

(Ord b, Ord a) => Ord (Either a b) 

Methods

compare :: Either a b -> Either a b -> Ordering #

(<) :: Either a b -> Either a b -> Bool #

(<=) :: Either a b -> Either a b -> Bool #

(>) :: Either a b -> Either a b -> Bool #

(>=) :: Either a b -> Either a b -> Bool #

max :: Either a b -> Either a b -> Either a b #

min :: Either a b -> Either a b -> Either a b #

Ord (f p) => Ord (Rec1 f p) 

Methods

compare :: Rec1 f p -> Rec1 f p -> Ordering #

(<) :: Rec1 f p -> Rec1 f p -> Bool #

(<=) :: Rec1 f p -> Rec1 f p -> Bool #

(>) :: Rec1 f p -> Rec1 f p -> Bool #

(>=) :: Rec1 f p -> Rec1 f p -> Bool #

max :: Rec1 f p -> Rec1 f p -> Rec1 f p #

min :: Rec1 f p -> Rec1 f p -> Rec1 f p #

Ord (URec Char p) 

Methods

compare :: URec Char p -> URec Char p -> Ordering #

(<) :: URec Char p -> URec Char p -> Bool #

(<=) :: URec Char p -> URec Char p -> Bool #

(>) :: URec Char p -> URec Char p -> Bool #

(>=) :: URec Char p -> URec Char p -> Bool #

max :: URec Char p -> URec Char p -> URec Char p #

min :: URec Char p -> URec Char p -> URec Char p #

Ord (URec Double p) 

Methods

compare :: URec Double p -> URec Double p -> Ordering #

(<) :: URec Double p -> URec Double p -> Bool #

(<=) :: URec Double p -> URec Double p -> Bool #

(>) :: URec Double p -> URec Double p -> Bool #

(>=) :: URec Double p -> URec Double p -> Bool #

max :: URec Double p -> URec Double p -> URec Double p #

min :: URec Double p -> URec Double p -> URec Double p #

Ord (URec Float p) 

Methods

compare :: URec Float p -> URec Float p -> Ordering #

(<) :: URec Float p -> URec Float p -> Bool #

(<=) :: URec Float p -> URec Float p -> Bool #

(>) :: URec Float p -> URec Float p -> Bool #

(>=) :: URec Float p -> URec Float p -> Bool #

max :: URec Float p -> URec Float p -> URec Float p #

min :: URec Float p -> URec Float p -> URec Float p #

Ord (URec Int p) 

Methods

compare :: URec Int p -> URec Int p -> Ordering #

(<) :: URec Int p -> URec Int p -> Bool #

(<=) :: URec Int p -> URec Int p -> Bool #

(>) :: URec Int p -> URec Int p -> Bool #

(>=) :: URec Int p -> URec Int p -> Bool #

max :: URec Int p -> URec Int p -> URec Int p #

min :: URec Int p -> URec Int p -> URec Int p #

Ord (URec Word p) 

Methods

compare :: URec Word p -> URec Word p -> Ordering #

(<) :: URec Word p -> URec Word p -> Bool #

(<=) :: URec Word p -> URec Word p -> Bool #

(>) :: URec Word p -> URec Word p -> Bool #

(>=) :: URec Word p -> URec Word p -> Bool #

max :: URec Word p -> URec Word p -> URec Word p #

min :: URec Word p -> URec Word p -> URec Word p #

Ord (URec (Ptr ()) p) 

Methods

compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering #

(<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

(Ord a, Ord b) => Ord (a, b) 

Methods

compare :: (a, b) -> (a, b) -> Ordering #

(<) :: (a, b) -> (a, b) -> Bool #

(<=) :: (a, b) -> (a, b) -> Bool #

(>) :: (a, b) -> (a, b) -> Bool #

(>=) :: (a, b) -> (a, b) -> Bool #

max :: (a, b) -> (a, b) -> (a, b) #

min :: (a, b) -> (a, b) -> (a, b) #

Ord a => Ord (Arg a b) 

Methods

compare :: Arg a b -> Arg a b -> Ordering #

(<) :: Arg a b -> Arg a b -> Bool #

(<=) :: Arg a b -> Arg a b -> Bool #

(>) :: Arg a b -> Arg a b -> Bool #

(>=) :: Arg a b -> Arg a b -> Bool #

max :: Arg a b -> Arg a b -> Arg a b #

min :: Arg a b -> Arg a b -> Arg a b #

Ord (Proxy k s) 

Methods

compare :: Proxy k s -> Proxy k s -> Ordering #

(<) :: Proxy k s -> Proxy k s -> Bool #

(<=) :: Proxy k s -> Proxy k s -> Bool #

(>) :: Proxy k s -> Proxy k s -> Bool #

(>=) :: Proxy k s -> Proxy k s -> Bool #

max :: Proxy k s -> Proxy k s -> Proxy k s #

min :: Proxy k s -> Proxy k s -> Proxy k s #

(Ord b, Ord a) => Ord (These a b) # 

Methods

compare :: These a b -> These a b -> Ordering #

(<) :: These a b -> These a b -> Bool #

(<=) :: These a b -> These a b -> Bool #

(>) :: These a b -> These a b -> Bool #

(>=) :: These a b -> These a b -> Bool #

max :: These a b -> These a b -> These a b #

min :: These a b -> These a b -> These a b #

Ord c => Ord (K1 i c p) 

Methods

compare :: K1 i c p -> K1 i c p -> Ordering #

(<) :: K1 i c p -> K1 i c p -> Bool #

(<=) :: K1 i c p -> K1 i c p -> Bool #

(>) :: K1 i c p -> K1 i c p -> Bool #

(>=) :: K1 i c p -> K1 i c p -> Bool #

max :: K1 i c p -> K1 i c p -> K1 i c p #

min :: K1 i c p -> K1 i c p -> K1 i c p #

(Ord (g p), Ord (f p)) => Ord ((:+:) f g p) 

Methods

compare :: (f :+: g) p -> (f :+: g) p -> Ordering #

(<) :: (f :+: g) p -> (f :+: g) p -> Bool #

(<=) :: (f :+: g) p -> (f :+: g) p -> Bool #

(>) :: (f :+: g) p -> (f :+: g) p -> Bool #

(>=) :: (f :+: g) p -> (f :+: g) p -> Bool #

max :: (f :+: g) p -> (f :+: g) p -> (f :+: g) p #

min :: (f :+: g) p -> (f :+: g) p -> (f :+: g) p #

(Ord (g p), Ord (f p)) => Ord ((:*:) f g p) 

Methods

compare :: (f :*: g) p -> (f :*: g) p -> Ordering #

(<) :: (f :*: g) p -> (f :*: g) p -> Bool #

(<=) :: (f :*: g) p -> (f :*: g) p -> Bool #

(>) :: (f :*: g) p -> (f :*: g) p -> Bool #

(>=) :: (f :*: g) p -> (f :*: g) p -> Bool #

max :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

min :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

Ord (f (g p)) => Ord ((:.:) f g p) 

Methods

compare :: (f :.: g) p -> (f :.: g) p -> Ordering #

(<) :: (f :.: g) p -> (f :.: g) p -> Bool #

(<=) :: (f :.: g) p -> (f :.: g) p -> Bool #

(>) :: (f :.: g) p -> (f :.: g) p -> Bool #

(>=) :: (f :.: g) p -> (f :.: g) p -> Bool #

max :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

min :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

(Ord a, Ord b, Ord c) => Ord (a, b, c) 

Methods

compare :: (a, b, c) -> (a, b, c) -> Ordering #

(<) :: (a, b, c) -> (a, b, c) -> Bool #

(<=) :: (a, b, c) -> (a, b, c) -> Bool #

(>) :: (a, b, c) -> (a, b, c) -> Bool #

(>=) :: (a, b, c) -> (a, b, c) -> Bool #

max :: (a, b, c) -> (a, b, c) -> (a, b, c) #

min :: (a, b, c) -> (a, b, c) -> (a, b, c) #

Ord a => Ord (Const k a b) 

Methods

compare :: Const k a b -> Const k a b -> Ordering #

(<) :: Const k a b -> Const k a b -> Bool #

(<=) :: Const k a b -> Const k a b -> Bool #

(>) :: Const k a b -> Const k a b -> Bool #

(>=) :: Const k a b -> Const k a b -> Bool #

max :: Const k a b -> Const k a b -> Const k a b #

min :: Const k a b -> Const k a b -> Const k a b #

Ord (f a) => Ord (Alt k f a) 

Methods

compare :: Alt k f a -> Alt k f a -> Ordering #

(<) :: Alt k f a -> Alt k f a -> Bool #

(<=) :: Alt k f a -> Alt k f a -> Bool #

(>) :: Alt k f a -> Alt k f a -> Bool #

(>=) :: Alt k f a -> Alt k f a -> Bool #

max :: Alt k f a -> Alt k f a -> Alt k f a #

min :: Alt k f a -> Alt k f a -> Alt k f a #

Ord ((:~:) k a b) 

Methods

compare :: (k :~: a) b -> (k :~: a) b -> Ordering #

(<) :: (k :~: a) b -> (k :~: a) b -> Bool #

(<=) :: (k :~: a) b -> (k :~: a) b -> Bool #

(>) :: (k :~: a) b -> (k :~: a) b -> Bool #

(>=) :: (k :~: a) b -> (k :~: a) b -> Bool #

max :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b #

min :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b #

Ord (f p) => Ord (M1 i c f p) 

Methods

compare :: M1 i c f p -> M1 i c f p -> Ordering #

(<) :: M1 i c f p -> M1 i c f p -> Bool #

(<=) :: M1 i c f p -> M1 i c f p -> Bool #

(>) :: M1 i c f p -> M1 i c f p -> Bool #

(>=) :: M1 i c f p -> M1 i c f p -> Bool #

max :: M1 i c f p -> M1 i c f p -> M1 i c f p #

min :: M1 i c f p -> M1 i c f p -> M1 i c f p #

(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) 

Methods

compare :: (a, b, c, d) -> (a, b, c, d) -> Ordering #

(<) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(<=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(>) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(>=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

max :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

min :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) 

Methods

compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering #

(<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) 

Methods

compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering #

(<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) 

Methods

compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering #

(<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) 

Methods

compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) #

min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) 

Methods

compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) #

min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) #

min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) #

min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Eq a where #

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4 #

(/=) :: a -> a -> Bool infix 4 #

Instances

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Eq Char 

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Eq Double 

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Eq Float 

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Eq Int 

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Eq Int8 

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Eq Int16 

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Eq Int32 

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Eq Int64 

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Eq Integer 

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Eq Ordering 
Eq Word 

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Eq Word8 

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Eq Word16 

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Eq Word32 

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Eq Word64 

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Eq TypeRep 

Methods

(==) :: TypeRep -> TypeRep -> Bool #

(/=) :: TypeRep -> TypeRep -> Bool #

Eq () 

Methods

(==) :: () -> () -> Bool #

(/=) :: () -> () -> Bool #

Eq TyCon 

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq BigNat 

Methods

(==) :: BigNat -> BigNat -> Bool #

(/=) :: BigNat -> BigNat -> Bool #

Eq SpecConstrAnnotation 
Eq Natural 

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Eq Void 

Methods

(==) :: Void -> Void -> Bool #

(/=) :: Void -> Void -> Bool #

Eq Constr

Equality of constructors

Methods

(==) :: Constr -> Constr -> Bool #

(/=) :: Constr -> Constr -> Bool #

Eq DataRep 

Methods

(==) :: DataRep -> DataRep -> Bool #

(/=) :: DataRep -> DataRep -> Bool #

Eq ConstrRep 
Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Version 

Methods

(==) :: Version -> Version -> Bool #

(/=) :: Version -> Version -> Bool #

Eq CDev 

Methods

(==) :: CDev -> CDev -> Bool #

(/=) :: CDev -> CDev -> Bool #

Eq CIno 

Methods

(==) :: CIno -> CIno -> Bool #

(/=) :: CIno -> CIno -> Bool #

Eq CMode 

Methods

(==) :: CMode -> CMode -> Bool #

(/=) :: CMode -> CMode -> Bool #

Eq COff 

Methods

(==) :: COff -> COff -> Bool #

(/=) :: COff -> COff -> Bool #

Eq CPid 

Methods

(==) :: CPid -> CPid -> Bool #

(/=) :: CPid -> CPid -> Bool #

Eq CSsize 

Methods

(==) :: CSsize -> CSsize -> Bool #

(/=) :: CSsize -> CSsize -> Bool #

Eq CGid 

Methods

(==) :: CGid -> CGid -> Bool #

(/=) :: CGid -> CGid -> Bool #

Eq CNlink 

Methods

(==) :: CNlink -> CNlink -> Bool #

(/=) :: CNlink -> CNlink -> Bool #

Eq CUid 

Methods

(==) :: CUid -> CUid -> Bool #

(/=) :: CUid -> CUid -> Bool #

Eq CCc 

Methods

(==) :: CCc -> CCc -> Bool #

(/=) :: CCc -> CCc -> Bool #

Eq CSpeed 

Methods

(==) :: CSpeed -> CSpeed -> Bool #

(/=) :: CSpeed -> CSpeed -> Bool #

Eq CTcflag 

Methods

(==) :: CTcflag -> CTcflag -> Bool #

(/=) :: CTcflag -> CTcflag -> Bool #

Eq CRLim 

Methods

(==) :: CRLim -> CRLim -> Bool #

(/=) :: CRLim -> CRLim -> Bool #

Eq Fd 

Methods

(==) :: Fd -> Fd -> Bool #

(/=) :: Fd -> Fd -> Bool #

Eq AsyncException 
Eq ArrayException 
Eq ExitCode 
Eq IOErrorType 
Eq WordPtr 

Methods

(==) :: WordPtr -> WordPtr -> Bool #

(/=) :: WordPtr -> WordPtr -> Bool #

Eq IntPtr 

Methods

(==) :: IntPtr -> IntPtr -> Bool #

(/=) :: IntPtr -> IntPtr -> Bool #

Eq CChar 

Methods

(==) :: CChar -> CChar -> Bool #

(/=) :: CChar -> CChar -> Bool #

Eq CSChar 

Methods

(==) :: CSChar -> CSChar -> Bool #

(/=) :: CSChar -> CSChar -> Bool #

Eq CUChar 

Methods

(==) :: CUChar -> CUChar -> Bool #

(/=) :: CUChar -> CUChar -> Bool #

Eq CShort 

Methods

(==) :: CShort -> CShort -> Bool #

(/=) :: CShort -> CShort -> Bool #

Eq CUShort 

Methods

(==) :: CUShort -> CUShort -> Bool #

(/=) :: CUShort -> CUShort -> Bool #

Eq CInt 

Methods

(==) :: CInt -> CInt -> Bool #

(/=) :: CInt -> CInt -> Bool #

Eq CUInt 

Methods

(==) :: CUInt -> CUInt -> Bool #

(/=) :: CUInt -> CUInt -> Bool #

Eq CLong 

Methods

(==) :: CLong -> CLong -> Bool #

(/=) :: CLong -> CLong -> Bool #

Eq CULong 

Methods

(==) :: CULong -> CULong -> Bool #

(/=) :: CULong -> CULong -> Bool #

Eq CLLong 

Methods

(==) :: CLLong -> CLLong -> Bool #

(/=) :: CLLong -> CLLong -> Bool #

Eq CULLong 

Methods

(==) :: CULLong -> CULLong -> Bool #

(/=) :: CULLong -> CULLong -> Bool #

Eq CFloat 

Methods

(==) :: CFloat -> CFloat -> Bool #

(/=) :: CFloat -> CFloat -> Bool #

Eq CDouble 

Methods

(==) :: CDouble -> CDouble -> Bool #

(/=) :: CDouble -> CDouble -> Bool #

Eq CPtrdiff 
Eq CSize 

Methods

(==) :: CSize -> CSize -> Bool #

(/=) :: CSize -> CSize -> Bool #

Eq CWchar 

Methods

(==) :: CWchar -> CWchar -> Bool #

(/=) :: CWchar -> CWchar -> Bool #

Eq CSigAtomic 
Eq CClock 

Methods

(==) :: CClock -> CClock -> Bool #

(/=) :: CClock -> CClock -> Bool #

Eq CTime 

Methods

(==) :: CTime -> CTime -> Bool #

(/=) :: CTime -> CTime -> Bool #

Eq CUSeconds 
Eq CSUSeconds 
Eq CIntPtr 

Methods

(==) :: CIntPtr -> CIntPtr -> Bool #

(/=) :: CIntPtr -> CIntPtr -> Bool #

Eq CUIntPtr 
Eq CIntMax 

Methods

(==) :: CIntMax -> CIntMax -> Bool #

(/=) :: CIntMax -> CIntMax -> Bool #

Eq CUIntMax 
Eq All 

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Eq Any 

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Associativity 
Eq SourceUnpackedness 
Eq SourceStrictness 
Eq DecidedStrictness 
Eq MaskingState 
Eq IOException 
Eq ErrorCall 
Eq ArithException 
Eq SomeNat 

Methods

(==) :: SomeNat -> SomeNat -> Bool #

(/=) :: SomeNat -> SomeNat -> Bool #

Eq SomeSymbol 
Eq GeneralCategory 
Eq SrcLoc 

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq PinnedStatus # 
Eq Endianness # 
Eq Char7 # 

Methods

(==) :: Char7 -> Char7 -> Bool #

(/=) :: Char7 -> Char7 -> Bool #

Eq Word128 # 

Methods

(==) :: Word128 -> Word128 -> Bool #

(/=) :: Word128 -> Word128 -> Bool #

Eq Word256 # 

Methods

(==) :: Word256 -> Word256 -> Bool #

(/=) :: Word256 -> Word256 -> Bool #

Eq FileSize # 
Eq RecastDestinationSize # 
Eq RecastSourceSize # 
Eq OutOfBoundOperation # 
Eq Addr # 

Methods

(==) :: Addr -> Addr -> Bool #

(/=) :: Addr -> Addr -> Bool #

Eq ValidationFailure # 
Eq AsciiString # 
Eq String # 

Methods

(==) :: String -> String -> Bool #

(/=) :: String -> String -> Bool #

Eq Encoding # 
Eq a => Eq [a] 

Methods

(==) :: [a] -> [a] -> Bool #

(/=) :: [a] -> [a] -> Bool #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Eq a => Eq (Ratio a) 

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Eq (Ptr a) 

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Eq (FunPtr a) 

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Eq (V1 p) 

Methods

(==) :: V1 p -> V1 p -> Bool #

(/=) :: V1 p -> V1 p -> Bool #

Eq (U1 p) 

Methods

(==) :: U1 p -> U1 p -> Bool #

(/=) :: U1 p -> U1 p -> Bool #

Eq p => Eq (Par1 p) 

Methods

(==) :: Par1 p -> Par1 p -> Bool #

(/=) :: Par1 p -> Par1 p -> Bool #

Eq a => Eq (Identity a) 

Methods

(==) :: Identity a -> Identity a -> Bool #

(/=) :: Identity a -> Identity a -> Bool #

Eq a => Eq (Min a) 

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Eq a => Eq (Max a) 

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq m => Eq (WrappedMonoid m) 
Eq a => Eq (Option a) 

Methods

(==) :: Option a -> Option a -> Bool #

(/=) :: Option a -> Option a -> Bool #

Eq a => Eq (NonEmpty a) 

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Eq a => Eq (ZipList a) 

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Eq (ForeignPtr a) 

Methods

(==) :: ForeignPtr a -> ForeignPtr a -> Bool #

(/=) :: ForeignPtr a -> ForeignPtr a -> Bool #

Eq a => Eq (Dual a) 

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Eq a => Eq (Sum a) 

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Eq a => Eq (Product a) 

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq (IORef a) 

Methods

(==) :: IORef a -> IORef a -> Bool #

(/=) :: IORef a -> IORef a -> Bool #

Eq a => Eq (BE a) # 

Methods

(==) :: BE a -> BE a -> Bool #

(/=) :: BE a -> BE a -> Bool #

Eq a => Eq (LE a) # 

Methods

(==) :: LE a -> LE a -> Bool #

(/=) :: LE a -> LE a -> Bool #

Eq (FinalPtr a) # 

Methods

(==) :: FinalPtr a -> FinalPtr a -> Bool #

(/=) :: FinalPtr a -> FinalPtr a -> Bool #

Eq (CountOf ty) # 

Methods

(==) :: CountOf ty -> CountOf ty -> Bool #

(/=) :: CountOf ty -> CountOf ty -> Bool #

Eq (Offset ty) # 

Methods

(==) :: Offset ty -> Offset ty -> Bool #

(/=) :: Offset ty -> Offset ty -> Bool #

Eq a => Eq (NonEmpty a) # 

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Eq (Zn n) # 

Methods

(==) :: Zn n -> Zn n -> Bool #

(/=) :: Zn n -> Zn n -> Bool #

Eq (Zn64 n) # 

Methods

(==) :: Zn64 n -> Zn64 n -> Bool #

(/=) :: Zn64 n -> Zn64 n -> Bool #

(PrimType ty, Eq ty) => Eq (Block ty) # 

Methods

(==) :: Block ty -> Block ty -> Bool #

(/=) :: Block ty -> Block ty -> Bool #

(PrimType ty, Eq ty) => Eq (UArray ty) # 

Methods

(==) :: UArray ty -> UArray ty -> Bool #

(/=) :: UArray ty -> UArray ty -> Bool #

Eq a => Eq (Array a) # 

Methods

(==) :: Array a -> Array a -> Bool #

(/=) :: Array a -> Array a -> Bool #

(Eq b, Eq a) => Eq (Either a b) 

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

Eq (f p) => Eq (Rec1 f p) 

Methods

(==) :: Rec1 f p -> Rec1 f p -> Bool #

(/=) :: Rec1 f p -> Rec1 f p -> Bool #

Eq (URec Char p) 

Methods

(==) :: URec Char p -> URec Char p -> Bool #

(/=) :: URec Char p -> URec Char p -> Bool #

Eq (URec Double p) 

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Eq (URec Float p) 

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Eq (URec Int p) 

Methods

(==) :: URec Int p -> URec Int p -> Bool #

(/=) :: URec Int p -> URec Int p -> Bool #

Eq (URec Word p) 

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

Eq (URec (Ptr ()) p) 

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(Eq a, Eq b) => Eq (a, b) 

Methods

(==) :: (a, b) -> (a, b) -> Bool #

(/=) :: (a, b) -> (a, b) -> Bool #

Eq a => Eq (Arg a b) 

Methods

(==) :: Arg a b -> Arg a b -> Bool #

(/=) :: Arg a b -> Arg a b -> Bool #

Eq (Proxy k s) 

Methods

(==) :: Proxy k s -> Proxy k s -> Bool #

(/=) :: Proxy k s -> Proxy k s -> Bool #

Eq (STRef s a) 

Methods

(==) :: STRef s a -> STRef s a -> Bool #

(/=) :: STRef s a -> STRef s a -> Bool #

(Eq b, Eq a) => Eq (These a b) # 

Methods

(==) :: These a b -> These a b -> Bool #

(/=) :: These a b -> These a b -> Bool #

PrimType a => Eq (BlockN n a) # 

Methods

(==) :: BlockN n a -> BlockN n a -> Bool #

(/=) :: BlockN n a -> BlockN n a -> Bool #

Eq c => Eq (K1 i c p) 

Methods

(==) :: K1 i c p -> K1 i c p -> Bool #

(/=) :: K1 i c p -> K1 i c p -> Bool #

(Eq (g p), Eq (f p)) => Eq ((:+:) f g p) 

Methods

(==) :: (f :+: g) p -> (f :+: g) p -> Bool #

(/=) :: (f :+: g) p -> (f :+: g) p -> Bool #

(Eq (g p), Eq (f p)) => Eq ((:*:) f g p) 

Methods

(==) :: (f :*: g) p -> (f :*: g) p -> Bool #

(/=) :: (f :*: g) p -> (f :*: g) p -> Bool #

Eq (f (g p)) => Eq ((:.:) f g p) 

Methods

(==) :: (f :.: g) p -> (f :.: g) p -> Bool #

(/=) :: (f :.: g) p -> (f :.: g) p -> Bool #

(Eq a, Eq b, Eq c) => Eq (a, b, c) 

Methods

(==) :: (a, b, c) -> (a, b, c) -> Bool #

(/=) :: (a, b, c) -> (a, b, c) -> Bool #

Eq a => Eq (Const k a b) 

Methods

(==) :: Const k a b -> Const k a b -> Bool #

(/=) :: Const k a b -> Const k a b -> Bool #

Eq (f a) => Eq (Alt k f a) 

Methods

(==) :: Alt k f a -> Alt k f a -> Bool #

(/=) :: Alt k f a -> Alt k f a -> Bool #

Eq ((:~:) k a b) 

Methods

(==) :: (k :~: a) b -> (k :~: a) b -> Bool #

(/=) :: (k :~: a) b -> (k :~: a) b -> Bool #

Eq (f p) => Eq (M1 i c f p) 

Methods

(==) :: M1 i c f p -> M1 i c f p -> Bool #

(/=) :: M1 i c f p -> M1 i c f p -> Bool #

(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 

Methods

(==) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(/=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 

Methods

(==) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(/=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 

Methods

(==) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(/=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 

Methods

(==) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(/=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 

Methods

(==) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

class Bounded a where #

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Minimal complete definition

minBound, maxBound

Methods

minBound :: a #

maxBound :: a #

Instances

Bounded Bool 
Bounded Char 
Bounded Int 

Methods

minBound :: Int #

maxBound :: Int #

Bounded Int8 
Bounded Int16 
Bounded Int32 
Bounded Int64 
Bounded Ordering 
Bounded Word 
Bounded Word8 
Bounded Word16 
Bounded Word32 
Bounded Word64 
Bounded () 

Methods

minBound :: () #

maxBound :: () #

Bounded CDev 
Bounded CIno 
Bounded CMode 
Bounded COff 
Bounded CPid 
Bounded CSsize 
Bounded CGid 
Bounded CNlink 
Bounded CUid 
Bounded CTcflag 
Bounded CRLim 
Bounded Fd 

Methods

minBound :: Fd #

maxBound :: Fd #

Bounded WordPtr 
Bounded IntPtr 
Bounded CChar 
Bounded CSChar 
Bounded CUChar 
Bounded CShort 
Bounded CUShort 
Bounded CInt 
Bounded CUInt 
Bounded CLong 
Bounded CULong 
Bounded CLLong 
Bounded CULLong 
Bounded CPtrdiff 
Bounded CSize 
Bounded CWchar 
Bounded CSigAtomic 
Bounded CIntPtr 
Bounded CUIntPtr 
Bounded CIntMax 
Bounded CUIntMax 
Bounded All 

Methods

minBound :: All #

maxBound :: All #

Bounded Any 

Methods

minBound :: Any #

maxBound :: Any #

Bounded Associativity 
Bounded SourceUnpackedness 
Bounded SourceStrictness 
Bounded DecidedStrictness 
Bounded GeneralCategory 
Bounded Word128 # 
Bounded Word256 # 
Bounded Encoding # 
Bounded a => Bounded (Identity a) 
Bounded a => Bounded (Min a) 

Methods

minBound :: Min a #

maxBound :: Min a #

Bounded a => Bounded (Max a) 

Methods

minBound :: Max a #

maxBound :: Max a #

Bounded a => Bounded (First a) 

Methods

minBound :: First a #

maxBound :: First a #

Bounded a => Bounded (Last a) 

Methods

minBound :: Last a #

maxBound :: Last a #

Bounded a => Bounded (WrappedMonoid a) 
Bounded a => Bounded (Dual a) 

Methods

minBound :: Dual a #

maxBound :: Dual a #

Bounded a => Bounded (Sum a) 

Methods

minBound :: Sum a #

maxBound :: Sum a #

Bounded a => Bounded (Product a) 
(Bounded a, Bounded b) => Bounded (a, b) 

Methods

minBound :: (a, b) #

maxBound :: (a, b) #

Bounded (Proxy k s) 

Methods

minBound :: Proxy k s #

maxBound :: Proxy k s #

(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) 

Methods

minBound :: (a, b, c) #

maxBound :: (a, b, c) #

Bounded a => Bounded (Const k a b) 

Methods

minBound :: Const k a b #

maxBound :: Const k a b #

(~) k a b => Bounded ((:~:) k a b) 

Methods

minBound :: (k :~: a) b #

maxBound :: (k :~: a) b #

(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) 

Methods

minBound :: (a, b, c, d) #

maxBound :: (a, b, c, d) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) 

Methods

minBound :: (a, b, c, d, e) #

maxBound :: (a, b, c, d, e) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) 

Methods

minBound :: (a, b, c, d, e, f) #

maxBound :: (a, b, c, d, e, f) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) 

Methods

minBound :: (a, b, c, d, e, f, g) #

maxBound :: (a, b, c, d, e, f, g) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) 

Methods

minBound :: (a, b, c, d, e, f, g, h) #

maxBound :: (a, b, c, d, e, f, g, h) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) 

Methods

minBound :: (a, b, c, d, e, f, g, h, i) #

maxBound :: (a, b, c, d, e, f, g, h, i) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) 

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j) #

maxBound :: (a, b, c, d, e, f, g, h, i, j) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) 

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a #

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a #

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a] #

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a] #

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a] #

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a] #

Used in Haskell's translation of [n,n'..m].

Instances

Enum Bool 

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char 

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Int 

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Int8 

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Enum Int16 
Enum Int32 
Enum Int64 
Enum Integer 
Enum Ordering 
Enum Word 

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum Word8 
Enum Word16 
Enum Word32 
Enum Word64 
Enum () 

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum Natural 
Enum CDev 

Methods

succ :: CDev -> CDev #

pred :: CDev -> CDev #

toEnum :: Int -> CDev #

fromEnum :: CDev -> Int #

enumFrom :: CDev -> [CDev] #

enumFromThen :: CDev -> CDev -> [CDev] #

enumFromTo :: CDev -> CDev -> [CDev] #

enumFromThenTo :: CDev -> CDev -> CDev -> [CDev] #

Enum CIno 

Methods

succ :: CIno -> CIno #

pred :: CIno -> CIno #

toEnum :: Int -> CIno #

fromEnum :: CIno -> Int #

enumFrom :: CIno -> [CIno] #

enumFromThen :: CIno -> CIno -> [CIno] #

enumFromTo :: CIno -> CIno -> [CIno] #

enumFromThenTo :: CIno -> CIno -> CIno -> [CIno] #

Enum CMode 
Enum COff 

Methods

succ :: COff -> COff #

pred :: COff -> COff #

toEnum :: Int -> COff #

fromEnum :: COff -> Int #

enumFrom :: COff -> [COff] #

enumFromThen :: COff -> COff -> [COff] #

enumFromTo :: COff -> COff -> [COff] #

enumFromThenTo :: COff -> COff -> COff -> [COff] #

Enum CPid 

Methods

succ :: CPid -> CPid #

pred :: CPid -> CPid #

toEnum :: Int -> CPid #

fromEnum :: CPid -> Int #

enumFrom :: CPid -> [CPid] #

enumFromThen :: CPid -> CPid -> [CPid] #

enumFromTo :: CPid -> CPid -> [CPid] #

enumFromThenTo :: CPid -> CPid -> CPid -> [CPid] #

Enum CSsize 
Enum CGid 

Methods

succ :: CGid -> CGid #

pred :: CGid -> CGid #

toEnum :: Int -> CGid #

fromEnum :: CGid -> Int #

enumFrom :: CGid -> [CGid] #

enumFromThen :: CGid -> CGid -> [CGid] #

enumFromTo :: CGid -> CGid -> [CGid] #

enumFromThenTo :: CGid -> CGid -> CGid -> [CGid] #

Enum CNlink 
Enum CUid 

Methods

succ :: CUid -> CUid #

pred :: CUid -> CUid #

toEnum :: Int -> CUid #

fromEnum :: CUid -> Int #

enumFrom :: CUid -> [CUid] #

enumFromThen :: CUid -> CUid -> [CUid] #

enumFromTo :: CUid -> CUid -> [CUid] #

enumFromThenTo :: CUid -> CUid -> CUid -> [CUid] #

Enum CCc 

Methods

succ :: CCc -> CCc #

pred :: CCc -> CCc #

toEnum :: Int -> CCc #

fromEnum :: CCc -> Int #

enumFrom :: CCc -> [CCc] #

enumFromThen :: CCc -> CCc -> [CCc] #

enumFromTo :: CCc -> CCc -> [CCc] #

enumFromThenTo :: CCc -> CCc -> CCc -> [CCc] #

Enum CSpeed 
Enum CTcflag 
Enum CRLim 
Enum Fd 

Methods

succ :: Fd -> Fd #

pred :: Fd -> Fd #

toEnum :: Int -> Fd #

fromEnum :: Fd -> Int #

enumFrom :: Fd -> [Fd] #

enumFromThen :: Fd -> Fd -> [Fd] #

enumFromTo :: Fd -> Fd -> [Fd] #

enumFromThenTo :: Fd -> Fd -> Fd -> [Fd] #

Enum WordPtr 
Enum IntPtr 
Enum CChar 
Enum CSChar 
Enum CUChar 
Enum CShort 
Enum CUShort 
Enum CInt 

Methods

succ :: CInt -> CInt #

pred :: CInt -> CInt #

toEnum :: Int -> CInt #

fromEnum :: CInt -> Int #

enumFrom :: CInt -> [CInt] #

enumFromThen :: CInt -> CInt -> [CInt] #

enumFromTo :: CInt -> CInt -> [CInt] #

enumFromThenTo :: CInt -> CInt -> CInt -> [CInt] #

Enum CUInt 
Enum CLong 
Enum CULong 
Enum CLLong 
Enum CULLong 
Enum CFloat 
Enum CDouble 
Enum CPtrdiff 
Enum CSize 
Enum CWchar 
Enum CSigAtomic 
Enum CClock 
Enum CTime 
Enum CUSeconds 
Enum CSUSeconds 
Enum CIntPtr 
Enum CUIntPtr 
Enum CIntMax 
Enum CUIntMax 
Enum Associativity 
Enum SourceUnpackedness 
Enum SourceStrictness 
Enum DecidedStrictness 
Enum GeneralCategory 
Enum Word128 # 
Enum Word256 # 
Enum Encoding # 
Integral a => Enum (Ratio a) 

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum a => Enum (Identity a) 
Enum a => Enum (Min a) 

Methods

succ :: Min a -> Min a #

pred :: Min a -> Min a #

toEnum :: Int -> Min a #

fromEnum :: Min a -> Int #

enumFrom :: Min a -> [Min a] #

enumFromThen :: Min a -> Min a -> [Min a] #

enumFromTo :: Min a -> Min a -> [Min a] #

enumFromThenTo :: Min a -> Min a -> Min a -> [Min a] #

Enum a => Enum (Max a) 

Methods

succ :: Max a -> Max a #

pred :: Max a -> Max a #

toEnum :: Int -> Max a #

fromEnum :: Max a -> Int #

enumFrom :: Max a -> [Max a] #

enumFromThen :: Max a -> Max a -> [Max a] #

enumFromTo :: Max a -> Max a -> [Max a] #

enumFromThenTo :: Max a -> Max a -> Max a -> [Max a] #

Enum a => Enum (First a) 

Methods

succ :: First a -> First a #

pred :: First a -> First a #

toEnum :: Int -> First a #

fromEnum :: First a -> Int #

enumFrom :: First a -> [First a] #

enumFromThen :: First a -> First a -> [First a] #

enumFromTo :: First a -> First a -> [First a] #

enumFromThenTo :: First a -> First a -> First a -> [First a] #

Enum a => Enum (Last a) 

Methods

succ :: Last a -> Last a #

pred :: Last a -> Last a #

toEnum :: Int -> Last a #

fromEnum :: Last a -> Int #

enumFrom :: Last a -> [Last a] #

enumFromThen :: Last a -> Last a -> [Last a] #

enumFromTo :: Last a -> Last a -> [Last a] #

enumFromThenTo :: Last a -> Last a -> Last a -> [Last a] #

Enum a => Enum (WrappedMonoid a) 
Enum (CountOf ty) # 

Methods

succ :: CountOf ty -> CountOf ty #

pred :: CountOf ty -> CountOf ty #

toEnum :: Int -> CountOf ty #

fromEnum :: CountOf ty -> Int #

enumFrom :: CountOf ty -> [CountOf ty] #

enumFromThen :: CountOf ty -> CountOf ty -> [CountOf ty] #

enumFromTo :: CountOf ty -> CountOf ty -> [CountOf ty] #

enumFromThenTo :: CountOf ty -> CountOf ty -> CountOf ty -> [CountOf ty] #

Enum (Offset ty) # 

Methods

succ :: Offset ty -> Offset ty #

pred :: Offset ty -> Offset ty #

toEnum :: Int -> Offset ty #

fromEnum :: Offset ty -> Int #

enumFrom :: Offset ty -> [Offset ty] #

enumFromThen :: Offset ty -> Offset ty -> [Offset ty] #

enumFromTo :: Offset ty -> Offset ty -> [Offset ty] #

enumFromThenTo :: Offset ty -> Offset ty -> Offset ty -> [Offset ty] #

Enum (Proxy k s) 

Methods

succ :: Proxy k s -> Proxy k s #

pred :: Proxy k s -> Proxy k s #

toEnum :: Int -> Proxy k s #

fromEnum :: Proxy k s -> Int #

enumFrom :: Proxy k s -> [Proxy k s] #

enumFromThen :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromTo :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromThenTo :: Proxy k s -> Proxy k s -> Proxy k s -> [Proxy k s] #

Enum a => Enum (Const k a b) 

Methods

succ :: Const k a b -> Const k a b #

pred :: Const k a b -> Const k a b #

toEnum :: Int -> Const k a b #

fromEnum :: Const k a b -> Int #

enumFrom :: Const k a b -> [Const k a b] #

enumFromThen :: Const k a b -> Const k a b -> [Const k a b] #

enumFromTo :: Const k a b -> Const k a b -> [Const k a b] #

enumFromThenTo :: Const k a b -> Const k a b -> Const k a b -> [Const k a b] #

Enum (f a) => Enum (Alt k f a) 

Methods

succ :: Alt k f a -> Alt k f a #

pred :: Alt k f a -> Alt k f a #

toEnum :: Int -> Alt k f a #

fromEnum :: Alt k f a -> Int #

enumFrom :: Alt k f a -> [Alt k f a] #

enumFromThen :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromTo :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromThenTo :: Alt k f a -> Alt k f a -> Alt k f a -> [Alt k f a] #

(~) k a b => Enum ((:~:) k a b) 

Methods

succ :: (k :~: a) b -> (k :~: a) b #

pred :: (k :~: a) b -> (k :~: a) b #

toEnum :: Int -> (k :~: a) b #

fromEnum :: (k :~: a) b -> Int #

enumFrom :: (k :~: a) b -> [(k :~: a) b] #

enumFromThen :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromTo :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromThenTo :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

class Functor f where #

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

(<$) :: a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Instances

Functor [] 

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe 

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO 

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor V1 

Methods

fmap :: (a -> b) -> V1 a -> V1 b #

(<$) :: a -> V1 b -> V1 a #

Functor U1 

Methods

fmap :: (a -> b) -> U1 a -> U1 b #

(<$) :: a -> U1 b -> U1 a #

Functor Par1 

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor Identity 

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

Functor Min 

Methods

fmap :: (a -> b) -> Min a -> Min b #

(<$) :: a -> Min b -> Min a #

Functor Max 

Methods

fmap :: (a -> b) -> Max a -> Max b #

(<$) :: a -> Max b -> Max a #

Functor First 

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last 

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Option 

Methods

fmap :: (a -> b) -> Option a -> Option b #

(<$) :: a -> Option b -> Option a #

Functor NonEmpty 

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor ZipList 

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor Handler 

Methods

fmap :: (a -> b) -> Handler a -> Handler b #

(<$) :: a -> Handler b -> Handler a #

Functor Dual 

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Sum 

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Product 

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor First 

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last 

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Array # 

Methods

fmap :: (a -> b) -> Array a -> Array b #

(<$) :: a -> Array b -> Array a #

Functor ((->) r) 

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b #

(<$) :: a -> (r -> b) -> r -> a #

Functor (Either a) 

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

Functor f => Functor (Rec1 f) 

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b #

(<$) :: a -> Rec1 f b -> Rec1 f a #

Functor (URec Char) 

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b #

(<$) :: a -> URec Char b -> URec Char a #

Functor (URec Double) 

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Functor (URec Float) 

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Functor (URec Int) 

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Functor (URec Word) 

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Functor (URec (Ptr ())) 

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Functor ((,) a) 

Methods

fmap :: (a -> b) -> (a, a) -> (a, b) #

(<$) :: a -> (a, b) -> (a, a) #

Functor (Arg a) 

Methods

fmap :: (a -> b) -> Arg a a -> Arg a b #

(<$) :: a -> Arg a b -> Arg a a #

Monad m => Functor (WrappedMonad m) 

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Functor (ArrowMonad a) 

Methods

fmap :: (a -> b) -> ArrowMonad a a -> ArrowMonad a b #

(<$) :: a -> ArrowMonad a b -> ArrowMonad a a #

Functor (Proxy *) 

Methods

fmap :: (a -> b) -> Proxy * a -> Proxy * b #

(<$) :: a -> Proxy * b -> Proxy * a #

Functor (ST s) 

Methods

fmap :: (a -> b) -> ST s a -> ST s b #

(<$) :: a -> ST s b -> ST s a #

Functor (These a) # 

Methods

fmap :: (a -> b) -> These a a -> These a b #

(<$) :: a -> These a b -> These a a #

Functor (K1 i c) 

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b #

(<$) :: a -> K1 i c b -> K1 i c a #

(Functor g, Functor f) => Functor ((:+:) f g) 

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b #

(<$) :: a -> (f :+: g) b -> (f :+: g) a #

(Functor g, Functor f) => Functor ((:*:) f g) 

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b #

(<$) :: a -> (f :*: g) b -> (f :*: g) a #

(Functor g, Functor f) => Functor ((:.:) f g) 

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b #

(<$) :: a -> (f :.: g) b -> (f :.: g) a #

Arrow a => Functor (WrappedArrow a b) 

Methods

fmap :: (a -> b) -> WrappedArrow a b a -> WrappedArrow a b b #

(<$) :: a -> WrappedArrow a b b -> WrappedArrow a b a #

Functor (Const * m) 

Methods

fmap :: (a -> b) -> Const * m a -> Const * m b #

(<$) :: a -> Const * m b -> Const * m a #

Functor f => Functor (Alt * f) 

Methods

fmap :: (a -> b) -> Alt * f a -> Alt * f b #

(<$) :: a -> Alt * f b -> Alt * f a #

Monad m => Functor (Reader r m) # 

Methods

fmap :: (a -> b) -> Reader r m a -> Reader r m b #

(<$) :: a -> Reader r m b -> Reader r m a #

Monad m => Functor (State s m) # 

Methods

fmap :: (a -> b) -> State s m a -> State s m b #

(<$) :: a -> State s m b -> State s m a #

Functor f => Functor (M1 i c f) 

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b #

(<$) :: a -> M1 i c f b -> M1 i c f a #

Monad state => Functor (Builder collection mutCollection step state err) # 

Methods

fmap :: (a -> b) -> Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b #

(<$) :: a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err a #

class Functor f => Applicative f where #

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*>).

A minimal complete definition must include implementations of these functions satisfying the following laws:

identity
pure id <*> v = v
composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
homomorphism
pure f <*> pure x = pure (f x)
interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, (<*>)

Methods

pure :: a -> f a #

Lift a value.

(<*>) :: f (a -> b) -> f a -> f b infixl 4 #

Sequential application.

(*>) :: f a -> f b -> f b infixl 4 #

Sequence actions, discarding the value of the first argument.

(<*) :: f a -> f b -> f a infixl 4 #

Sequence actions, discarding the value of the second argument.

Instances

Applicative [] 

Methods

pure :: a -> [a] #

(<*>) :: [a -> b] -> [a] -> [b] #

(*>) :: [a] -> [b] -> [b] #

(<*) :: [a] -> [b] -> [a] #

Applicative Maybe 

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Applicative IO 

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

Applicative U1 

Methods

pure :: a -> U1 a #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b #

(*>) :: U1 a -> U1 b -> U1 b #

(<*) :: U1 a -> U1 b -> U1 a #

Applicative Par1 

Methods

pure :: a -> Par1 a #

(<*>) :: Par1 (a -> b) -> Par1 a -> Par1 b #

(*>) :: Par1 a -> Par1 b -> Par1 b #

(<*) :: Par1 a -> Par1 b -> Par1 a #

Applicative Identity 

Methods

pure :: a -> Identity a #

(<*>) :: Identity (a -> b) -> Identity a -> Identity b #

(*>) :: Identity a -> Identity b -> Identity b #

(<*) :: Identity a -> Identity b -> Identity a #

Applicative Min 

Methods

pure :: a -> Min a #

(<*>) :: Min (a -> b) -> Min a -> Min b #

(*>) :: Min a -> Min b -> Min b #

(<*) :: Min a -> Min b -> Min a #

Applicative Max 

Methods

pure :: a -> Max a #

(<*>) :: Max (a -> b) -> Max a -> Max b #

(*>) :: Max a -> Max b -> Max b #

(<*) :: Max a -> Max b -> Max a #

Applicative First 

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative Last 

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative Option 

Methods

pure :: a -> Option a #

(<*>) :: Option (a -> b) -> Option a -> Option b #

(*>) :: Option a -> Option b -> Option b #

(<*) :: Option a -> Option b -> Option a #

Applicative NonEmpty 

Methods

pure :: a -> NonEmpty a #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a #

Applicative ZipList 

Methods

pure :: a -> ZipList a #

(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b #

(*>) :: ZipList a -> ZipList b -> ZipList b #

(<*) :: ZipList a -> ZipList b -> ZipList a #

Applicative Dual 

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Applicative Sum 

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Applicative Product 

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Applicative First 

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative Last 

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative ((->) a) 

Methods

pure :: a -> a -> a #

(<*>) :: (a -> a -> b) -> (a -> a) -> a -> b #

(*>) :: (a -> a) -> (a -> b) -> a -> b #

(<*) :: (a -> a) -> (a -> b) -> a -> a #

Applicative (Either e) 

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Applicative f => Applicative (Rec1 f) 

Methods

pure :: a -> Rec1 f a #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a #

Monoid a => Applicative ((,) a) 

Methods

pure :: a -> (a, a) #

(<*>) :: (a, a -> b) -> (a, a) -> (a, b) #

(*>) :: (a, a) -> (a, b) -> (a, b) #

(<*) :: (a, a) -> (a, b) -> (a, a) #

Monad m => Applicative (WrappedMonad m) 

Methods

pure :: a -> WrappedMonad m a #

(<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

(<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Applicative (ArrowMonad a) 

Methods

pure :: a -> ArrowMonad a a #

(<*>) :: ArrowMonad a (a -> b) -> ArrowMonad a a -> ArrowMonad a b #

(*>) :: ArrowMonad a a -> ArrowMonad a b -> ArrowMonad a b #

(<*) :: ArrowMonad a a -> ArrowMonad a b -> ArrowMonad a a #

Applicative (Proxy *) 

Methods

pure :: a -> Proxy * a #

(<*>) :: Proxy * (a -> b) -> Proxy * a -> Proxy * b #

(*>) :: Proxy * a -> Proxy * b -> Proxy * b #

(<*) :: Proxy * a -> Proxy * b -> Proxy * a #

Applicative (ST s) 

Methods

pure :: a -> ST s a #

(<*>) :: ST s (a -> b) -> ST s a -> ST s b #

(*>) :: ST s a -> ST s b -> ST s b #

(<*) :: ST s a -> ST s b -> ST s a #

(Applicative f, Applicative g) => Applicative ((:*:) f g) 

Methods

pure :: a -> (f :*: g) a #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a #

(Applicative f, Applicative g) => Applicative ((:.:) f g) 

Methods

pure :: a -> (f :.: g) a #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a #

Arrow a => Applicative (WrappedArrow a b) 

Methods

pure :: a -> WrappedArrow a b a #

(<*>) :: WrappedArrow a b (a -> b) -> WrappedArrow a b a -> WrappedArrow a b b #

(*>) :: WrappedArrow a b a -> WrappedArrow a b b -> WrappedArrow a b b #

(<*) :: WrappedArrow a b a -> WrappedArrow a b b -> WrappedArrow a b a #

Monoid m => Applicative (Const * m) 

Methods

pure :: a -> Const * m a #

(<*>) :: Const * m (a -> b) -> Const * m a -> Const * m b #

(*>) :: Const * m a -> Const * m b -> Const * m b #

(<*) :: Const * m a -> Const * m b -> Const * m a #

Applicative f => Applicative (Alt * f) 

Methods

pure :: a -> Alt * f a #

(<*>) :: Alt * f (a -> b) -> Alt * f a -> Alt * f b #

(*>) :: Alt * f a -> Alt * f b -> Alt * f b #

(<*) :: Alt * f a -> Alt * f b -> Alt * f a #

Monad m => Applicative (Reader r m) # 

Methods

pure :: a -> Reader r m a #

(<*>) :: Reader r m (a -> b) -> Reader r m a -> Reader r m b #

(*>) :: Reader r m a -> Reader r m b -> Reader r m b #

(<*) :: Reader r m a -> Reader r m b -> Reader r m a #

Monad m => Applicative (State s m) # 

Methods

pure :: a -> State s m a #

(<*>) :: State s m (a -> b) -> State s m a -> State s m b #

(*>) :: State s m a -> State s m b -> State s m b #

(<*) :: State s m a -> State s m b -> State s m a #

Applicative f => Applicative (M1 i c f) 

Methods

pure :: a -> M1 i c f a #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a #

Monad state => Applicative (Builder collection mutCollection step state err) # 

Methods

pure :: a -> Builder collection mutCollection step state err a #

(<*>) :: Builder collection mutCollection step state err (a -> b) -> Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b #

(*>) :: Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err b #

(<*) :: Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err a #

class Applicative m => Monad m where #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following laws:

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: m a -> m b -> m b infixl 1 #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a #

Inject a value into the monadic type.

fail :: String -> m a #

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

As part of the MonadFail proposal (MFP), this function is moved to its own class MonadFail (see Control.Monad.Fail for more details). The definition here will be removed in a future release.

Instances

Monad [] 

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

fail :: String -> [a] #

Monad Maybe 

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Monad IO 

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Monad U1 

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b #

(>>) :: U1 a -> U1 b -> U1 b #

return :: a -> U1 a #

fail :: String -> U1 a #

Monad Par1 

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b #

(>>) :: Par1 a -> Par1 b -> Par1 b #

return :: a -> Par1 a #

fail :: String -> Par1 a #

Monad Identity 

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b #

(>>) :: Identity a -> Identity b -> Identity b #

return :: a -> Identity a #

fail :: String -> Identity a #

Monad Min 

Methods

(>>=) :: Min a -> (a -> Min b) -> Min b #

(>>) :: Min a -> Min b -> Min b #

return :: a -> Min a #

fail :: String -> Min a #

Monad Max 

Methods

(>>=) :: Max a -> (a -> Max b) -> Max b #

(>>) :: Max a -> Max b -> Max b #

return :: a -> Max a #

fail :: String -> Max a #

Monad First 

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last 

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monad Option 

Methods

(>>=) :: Option a -> (a -> Option b) -> Option b #

(>>) :: Option a -> Option b -> Option b #

return :: a -> Option a #

fail :: String -> Option a #

Monad NonEmpty 

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

fail :: String -> NonEmpty a #

Monad Dual 

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Monad Sum 

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Monad Product 

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Monad First 

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last 

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monad ((->) r) 

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b #

(>>) :: (r -> a) -> (r -> b) -> r -> b #

return :: a -> r -> a #

fail :: String -> r -> a #

Monad (Either e) 

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Monad f => Monad (Rec1 f) 

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

return :: a -> Rec1 f a #

fail :: String -> Rec1 f a #

Monoid a => Monad ((,) a) 

Methods

(>>=) :: (a, a) -> (a -> (a, b)) -> (a, b) #

(>>) :: (a, a) -> (a, b) -> (a, b) #

return :: a -> (a, a) #

fail :: String -> (a, a) #

Monad m => Monad (WrappedMonad m) 

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

fail :: String -> WrappedMonad m a #

ArrowApply a => Monad (ArrowMonad a) 

Methods

(>>=) :: ArrowMonad a a -> (a -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a -> ArrowMonad a b -> ArrowMonad a b #

return :: a -> ArrowMonad a a #

fail :: String -> ArrowMonad a a #

Monad (Proxy *) 

Methods

(>>=) :: Proxy * a -> (a -> Proxy * b) -> Proxy * b #

(>>) :: Proxy * a -> Proxy * b -> Proxy * b #

return :: a -> Proxy * a #

fail :: String -> Proxy * a #

Monad (ST s) 

Methods

(>>=) :: ST s a -> (a -> ST s b) -> ST s b #

(>>) :: ST s a -> ST s b -> ST s b #

return :: a -> ST s a #

fail :: String -> ST s a #

(Monad f, Monad g) => Monad ((:*:) f g) 

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

return :: a -> (f :*: g) a #

fail :: String -> (f :*: g) a #

Monad f => Monad (Alt * f) 

Methods

(>>=) :: Alt * f a -> (a -> Alt * f b) -> Alt * f b #

(>>) :: Alt * f a -> Alt * f b -> Alt * f b #

return :: a -> Alt * f a #

fail :: String -> Alt * f a #

Monad m => Monad (Reader r m) # 

Methods

(>>=) :: Reader r m a -> (a -> Reader r m b) -> Reader r m b #

(>>) :: Reader r m a -> Reader r m b -> Reader r m b #

return :: a -> Reader r m a #

fail :: String -> Reader r m a #

Monad m => Monad (State r m) # 

Methods

(>>=) :: State r m a -> (a -> State r m b) -> State r m b #

(>>) :: State r m a -> State r m b -> State r m b #

return :: a -> State r m a #

fail :: String -> State r m a #

Monad f => Monad (M1 i c f) 

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

return :: a -> M1 i c f a #

fail :: String -> M1 i c f a #

Monad state => Monad (Builder collection mutCollection step state err) # 

Methods

(>>=) :: Builder collection mutCollection step state err a -> (a -> Builder collection mutCollection step state err b) -> Builder collection mutCollection step state err b #

(>>) :: Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err b #

return :: a -> Builder collection mutCollection step state err a #

fail :: String -> Builder collection mutCollection step state err a #

data Maybe a :: * -> * #

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.

Constructors

Nothing 
Just a 

Instances

Monad Maybe 

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Functor Maybe 

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Applicative Maybe 

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Foldable Maybe 

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Generic1 Maybe 

Associated Types

type Rep1 (Maybe :: * -> *) :: * -> * #

Methods

from1 :: Maybe a -> Rep1 Maybe a #

to1 :: Rep1 Maybe a -> Maybe a #

Alternative Maybe 

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

MonadPlus Maybe 

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

MonadFailure Maybe # 

Associated Types

type Failure (Maybe :: * -> *) :: * #

Methods

mFail :: Failure Maybe -> Maybe () #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Data a => Data (Maybe a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) #

toConstr :: Maybe a -> Constr #

dataTypeOf :: Maybe a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) #

gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

Ord a => Ord (Maybe a) 

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Read a => Read (Maybe a) 
Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Generic (Maybe a) 

Associated Types

type Rep (Maybe a) :: * -> * #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Semigroup a => Semigroup (Maybe a) 

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there is no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

NormalForm a => NormalForm (Maybe a) # 

Methods

toNormalForm :: Maybe a -> () #

SingI (Maybe a) (Nothing a) 

Methods

sing :: Sing (Nothing a) a

SingKind a (KProxy a) => SingKind (Maybe a) (KProxy (Maybe a)) 

Associated Types

type DemoteRep (KProxy (Maybe a)) (kparam :: KProxy (KProxy (Maybe a))) :: *

Methods

fromSing :: Sing (KProxy (Maybe a)) a -> DemoteRep (KProxy (Maybe a)) kparam

SingI a a1 => SingI (Maybe a) (Just a a1) 

Methods

sing :: Sing (Just a a1) a

From (Maybe a) (Either () a) # 

Methods

from :: Maybe a -> Either () a #

type Rep1 Maybe 
type Failure Maybe # 
type Failure Maybe = ()
type Rep (Maybe a) 
data Sing (Maybe a) 
data Sing (Maybe a) where
type (==) (Maybe k) a b 
type (==) (Maybe k) a b = EqMaybe k a b
type DemoteRep (Maybe a) (KProxy (Maybe a)) 
type DemoteRep (Maybe a) (KProxy (Maybe a)) = Maybe (DemoteRep a (KProxy a))

data Ordering :: * #

Constructors

LT 
EQ 
GT 

Instances

Bounded Ordering 
Enum Ordering 
Eq Ordering 
Data Ordering 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering #

toConstr :: Ordering -> Constr #

dataTypeOf :: Ordering -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) #

gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

Ord Ordering 
Read Ordering 
Show Ordering 
Generic Ordering 

Associated Types

type Rep Ordering :: * -> * #

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Semigroup Ordering 
Monoid Ordering 
type Rep Ordering 
type Rep Ordering = D1 (MetaData "Ordering" "GHC.Types" "ghc-prim" False) ((:+:) (C1 (MetaCons "LT" PrefixI False) U1) ((:+:) (C1 (MetaCons "EQ" PrefixI False) U1) (C1 (MetaCons "GT" PrefixI False) U1)))
type (==) Ordering a b 
type (==) Ordering a b = EqOrdering a b

data Bool :: * #

Constructors

False 
True 

Instances

Bounded Bool 
Enum Bool 

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Data Bool 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool #

toConstr :: Bool -> Constr #

dataTypeOf :: Bool -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Bool) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) #

gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

Ord Bool 

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Read Bool 
Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Generic Bool 

Associated Types

type Rep Bool :: * -> * #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Storable Bool 

Methods

sizeOf :: Bool -> Int #

alignment :: Bool -> Int #

peekElemOff :: Ptr Bool -> Int -> IO Bool #

pokeElemOff :: Ptr Bool -> Int -> Bool -> IO () #

peekByteOff :: Ptr b -> Int -> IO Bool #

pokeByteOff :: Ptr b -> Int -> Bool -> IO () #

peek :: Ptr Bool -> IO Bool #

poke :: Ptr Bool -> Bool -> IO () #

Bits Bool 
FiniteBits Bool 
NormalForm Bool # 

Methods

toNormalForm :: Bool -> () #

SingI Bool False 

Methods

sing :: Sing False a

SingI Bool True 

Methods

sing :: Sing True a

SingKind Bool (KProxy Bool) 

Associated Types

type DemoteRep (KProxy Bool) (kparam :: KProxy (KProxy Bool)) :: *

Methods

fromSing :: Sing (KProxy Bool) a -> DemoteRep (KProxy Bool) kparam

type Rep Bool 
type Rep Bool = D1 (MetaData "Bool" "GHC.Types" "ghc-prim" False) ((:+:) (C1 (MetaCons "False" PrefixI False) U1) (C1 (MetaCons "True" PrefixI False) U1))
data Sing Bool 
data Sing Bool where
type (==) Bool a b 
type (==) Bool a b = EqBool a b
type DemoteRep Bool (KProxy Bool) 
type DemoteRep Bool (KProxy Bool) = Bool

data Int :: * #

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Instances

Bounded Int 

Methods

minBound :: Int #

maxBound :: Int #

Enum Int 

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Eq Int 

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Integral Int 

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Data Int 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int #

toConstr :: Int -> Constr #

dataTypeOf :: Int -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

Num Int 

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Ord Int 

Methods

compare :: Int -> Int -> Ordering #

(<) :: Int -> Int -> Bool #

(<=) :: Int -> Int -> Bool #

(>) :: Int -> Int -> Bool #

(>=) :: Int -> Int -> Bool #

max :: Int -> Int -> Int #

min :: Int -> Int -> Int #

Read Int 
Real Int 

Methods

toRational :: Int -> Rational #

Show Int 

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Storable Int 

Methods

sizeOf :: Int -> Int #

alignment :: Int -> Int #

peekElemOff :: Ptr Int -> Int -> IO Int #

pokeElemOff :: Ptr Int -> Int -> Int -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int #

pokeByteOff :: Ptr b -> Int -> Int -> IO () #

peek :: Ptr Int -> IO Int #

poke :: Ptr Int -> Int -> IO () #

Bits Int 

Methods

(.&.) :: Int -> Int -> Int #

(.|.) :: Int -> Int -> Int #

xor :: Int -> Int -> Int #

complement :: Int -> Int #

shift :: Int -> Int -> Int #

rotate :: Int -> Int -> Int #

zeroBits :: Int #

bit :: Int -> Int #

setBit :: Int -> Int -> Int #

clearBit :: Int -> Int -> Int #

complementBit :: Int -> Int -> Int #

testBit :: Int -> Int -> Bool #

bitSizeMaybe :: Int -> Maybe Int #

bitSize :: Int -> Int #

isSigned :: Int -> Bool #

shiftL :: Int -> Int -> Int #

unsafeShiftL :: Int -> Int -> Int #

shiftR :: Int -> Int -> Int #

unsafeShiftR :: Int -> Int -> Int #

rotateL :: Int -> Int -> Int #

rotateR :: Int -> Int -> Int #

popCount :: Int -> Int #

FiniteBits Int 
HasNegation Int # 

Methods

negate :: Int -> Int #

Integral Int # 

Methods

fromInteger :: Integer -> Int #

IsIntegral Int # 

Methods

toInteger :: Int -> Integer #

Additive Int # 

Methods

azero :: Int #

(+) :: Int -> Int -> Int #

scale :: IsNatural n => n -> Int -> Int #

IDivisible Int # 

Methods

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

divMod :: Int -> Int -> (Int, Int) #

Multiplicative Int # 

Methods

midentity :: Int #

(*) :: Int -> Int -> Int #

(^) :: (IsNatural n, IDivisible n) => Int -> n -> Int #

Subtractive Int # 

Associated Types

type Difference Int :: * #

Methods

(-) :: Int -> Int -> Difference Int #

NormalForm Int # 

Methods

toNormalForm :: Int -> () #

PrimMemoryComparable Int # 
PrimType Int # 
IntegralCast Int Word # 

Methods

integralCast :: Int -> Word #

IntegralCast Word Int # 

Methods

integralCast :: Word -> Int #

IntegralUpsize Int Int64 # 

Methods

integralUpsize :: Int -> Int64 #

IntegralUpsize Int8 Int # 

Methods

integralUpsize :: Int8 -> Int #

IntegralUpsize Int16 Int # 

Methods

integralUpsize :: Int16 -> Int #

IntegralUpsize Int32 Int # 

Methods

integralUpsize :: Int32 -> Int #

IntegralUpsize Word8 Int # 

Methods

integralUpsize :: Word8 -> Int #

IntegralDownsize Int Int8 # 
IntegralDownsize Int Int16 # 
IntegralDownsize Int Int32 # 
IntegralDownsize Int64 Int # 
From Int Int64 # 

Methods

from :: Int -> Int64 #

From Int Word # 

Methods

from :: Int -> Word #

From Int8 Int # 

Methods

from :: Int8 -> Int #

From Int16 Int # 

Methods

from :: Int16 -> Int #

From Int32 Int # 

Methods

from :: Int32 -> Int #

From Word Int # 

Methods

from :: Word -> Int #

From Word8 Int # 

Methods

from :: Word8 -> Int #

IntegralCast Int (CountOf ty) # 

Methods

integralCast :: Int -> CountOf ty #

IntegralCast Int (Offset ty) # 

Methods

integralCast :: Int -> Offset ty #

Functor (URec Int) 

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Foldable (URec Int) 

Methods

fold :: Monoid m => URec Int m -> m #

foldMap :: Monoid m => (a -> m) -> URec Int a -> m #

foldr :: (a -> b -> b) -> b -> URec Int a -> b #

foldr' :: (a -> b -> b) -> b -> URec Int a -> b #

foldl :: (b -> a -> b) -> b -> URec Int a -> b #

foldl' :: (b -> a -> b) -> b -> URec Int a -> b #

foldr1 :: (a -> a -> a) -> URec Int a -> a #

foldl1 :: (a -> a -> a) -> URec Int a -> a #

toList :: URec Int a -> [a] #

null :: URec Int a -> Bool #

length :: URec Int a -> Int #

elem :: Eq a => a -> URec Int a -> Bool #

maximum :: Ord a => URec Int a -> a #

minimum :: Ord a => URec Int a -> a #

sum :: Num a => URec Int a -> a #

product :: Num a => URec Int a -> a #

Generic1 (URec Int) 

Associated Types

type Rep1 (URec Int :: * -> *) :: * -> * #

Methods

from1 :: URec Int a -> Rep1 (URec Int) a #

to1 :: Rep1 (URec Int) a -> URec Int a #

From (CountOf ty) Int # 

Methods

from :: CountOf ty -> Int #

Eq (URec Int p) 

Methods

(==) :: URec Int p -> URec Int p -> Bool #

(/=) :: URec Int p -> URec Int p -> Bool #

Ord (URec Int p) 

Methods

compare :: URec Int p -> URec Int p -> Ordering #

(<) :: URec Int p -> URec Int p -> Bool #

(<=) :: URec Int p -> URec Int p -> Bool #

(>) :: URec Int p -> URec Int p -> Bool #

(>=) :: URec Int p -> URec Int p -> Bool #

max :: URec Int p -> URec Int p -> URec Int p #

min :: URec Int p -> URec Int p -> URec Int p #

Show (URec Int p) 

Methods

showsPrec :: Int -> URec Int p -> ShowS #

show :: URec Int p -> String #

showList :: [URec Int p] -> ShowS #

Generic (URec Int p) 

Associated Types

type Rep (URec Int p) :: * -> * #

Methods

from :: URec Int p -> Rep (URec Int p) x #

to :: Rep (URec Int p) x -> URec Int p #

data URec Int

Used for marking occurrences of Int#

data URec Int = UInt {}
type Difference Int # 
type Rep1 (URec Int) 
type Rep1 (URec Int) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just Symbol "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UInt))
type Rep (URec Int p) 
type Rep (URec Int p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just Symbol "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UInt))

data Integer :: * #

Invariant: Jn# and Jp# are used iff value doesn't fit in S#

Useful properties resulting from the invariants:

Instances

Enum Integer 
Eq Integer 

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Integral Integer 
Data Integer 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer #

toConstr :: Integer -> Constr #

dataTypeOf :: Integer -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Integer) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) #

gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

Num Integer 
Ord Integer 
Read Integer 
Real Integer 
Show Integer 
Bits Integer 
HasNegation Integer # 

Methods

negate :: Integer -> Integer #

Fractional Rational # 
Integral Integer # 
IsIntegral Integer # 

Methods

toInteger :: Integer -> Integer #

Additive Integer # 

Methods

azero :: Integer #

(+) :: Integer -> Integer -> Integer #

scale :: IsNatural n => n -> Integer -> Integer #

Divisible Rational # 

Methods

(/) :: Rational -> Rational -> Rational #

IDivisible Integer # 
Multiplicative Integer # 
Multiplicative Rational # 
Subtractive Integer # 

Associated Types

type Difference Integer :: * #

NormalForm Integer # 

Methods

toNormalForm :: Integer -> () #

IsIntegral a => IntegralUpsize a Integer # 

Methods

integralUpsize :: a -> Integer #

IntegralDownsize Integer Int8 # 
IntegralDownsize Integer Int16 # 
IntegralDownsize Integer Int32 # 
IntegralDownsize Integer Int64 # 
IntegralDownsize Integer Word8 # 
IntegralDownsize Integer Word16 # 
IntegralDownsize Integer Word32 # 
IntegralDownsize Integer Word64 # 
IntegralDownsize Integer Natural # 
IsIntegral n => From n Integer # 

Methods

from :: n -> Integer #

type Difference Integer # 

data Char :: * #

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).

Instances

Bounded Char 
Enum Char 

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Eq Char 

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Data Char 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char #

toConstr :: Char -> Constr #

dataTypeOf :: Char -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Char) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) #

gmapT :: (forall b. Data b => b -> b) -> Char -> Char #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

Ord Char 

Methods

compare :: Char -> Char -> Ordering #

(<) :: Char -> Char -> Bool #

(<=) :: Char -> Char -> Bool #

(>) :: Char -> Char -> Bool #

(>=) :: Char -> Char -> Bool #

max :: Char -> Char -> Char #

min :: Char -> Char -> Char #

Read Char 
Show Char 

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Storable Char 

Methods

sizeOf :: Char -> Int #

alignment :: Char -> Int #

peekElemOff :: Ptr Char -> Int -> IO Char #

pokeElemOff :: Ptr Char -> Int -> Char -> IO () #

peekByteOff :: Ptr b -> Int -> IO Char #

pokeByteOff :: Ptr b -> Int -> Char -> IO () #

peek :: Ptr Char -> IO Char #

poke :: Ptr Char -> Char -> IO () #

Subtractive Char # 

Associated Types

type Difference Char :: * #

Methods

(-) :: Char -> Char -> Difference Char #

NormalForm Char # 

Methods

toNormalForm :: Char -> () #

PrimMemoryComparable Char # 
PrimType Char # 
Functor (URec Char) 

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b #

(<$) :: a -> URec Char b -> URec Char a #

Foldable (URec Char) 

Methods

fold :: Monoid m => URec Char m -> m #

foldMap :: Monoid m => (a -> m) -> URec Char a -> m #

foldr :: (a -> b -> b) -> b -> URec Char a -> b #

foldr' :: (a -> b -> b) -> b -> URec Char a -> b #

foldl :: (b -> a -> b) -> b -> URec Char a -> b #

foldl' :: (b -> a -> b) -> b -> URec Char a -> b #

foldr1 :: (a -> a -> a) -> URec Char a -> a #

foldl1 :: (a -> a -> a) -> URec Char a -> a #

toList :: URec Char a -> [a] #

null :: URec Char a -> Bool #

length :: URec Char a -> Int #

elem :: Eq a => a -> URec Char a -> Bool #

maximum :: Ord a => URec Char a -> a #

minimum :: Ord a => URec Char a -> a #

sum :: Num a => URec Char a -> a #

product :: Num a => URec Char a -> a #

Generic1 (URec Char) 

Associated Types

type Rep1 (URec Char :: * -> *) :: * -> * #

Methods

from1 :: URec Char a -> Rep1 (URec Char) a #

to1 :: Rep1 (URec Char) a -> URec Char a #

Eq (URec Char p) 

Methods

(==) :: URec Char p -> URec Char p -> Bool #

(/=) :: URec Char p -> URec Char p -> Bool #

Ord (URec Char p) 

Methods

compare :: URec Char p -> URec Char p -> Ordering #

(<) :: URec Char p -> URec Char p -> Bool #

(<=) :: URec Char p -> URec Char p -> Bool #

(>) :: URec Char p -> URec Char p -> Bool #

(>=) :: URec Char p -> URec Char p -> Bool #

max :: URec Char p -> URec Char p -> URec Char p #

min :: URec Char p -> URec Char p -> URec Char p #

Show (URec Char p) 

Methods

showsPrec :: Int -> URec Char p -> ShowS #

show :: URec Char p -> String #

showList :: [URec Char p] -> ShowS #

Generic (URec Char p) 

Associated Types

type Rep (URec Char p) :: * -> * #

Methods

from :: URec Char p -> Rep (URec Char p) x #

to :: Rep (URec Char p) x -> URec Char p #

data URec Char

Used for marking occurrences of Char#

data URec Char = UChar {}
type Difference Char # 
type Rep1 (URec Char) 
type Rep1 (URec Char) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UChar" PrefixI True) (S1 (MetaSel (Just Symbol "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UChar))
type Rep (URec Char p) 
type Rep (URec Char p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UChar" PrefixI True) (S1 (MetaSel (Just Symbol "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UChar))

class Integral a where #

Integral Literal support

e.g. 123 :: Integer 123 :: Word8

Minimal complete definition

fromInteger

Methods

fromInteger :: Integer -> a #

class Fractional a where #

Fractional Literal support

e.g. 1.2 :: Double 0.03 :: Float

Minimal complete definition

fromRational

Methods

fromRational :: Rational -> a #

class HasNegation a where #

Negation support

e.g. -(f x)

Minimal complete definition

negate

Methods

negate :: a -> a #

data Int8 :: * #

8-bit signed integer type

Instances

Bounded Int8 
Enum Int8 

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Eq Int8 

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Integral Int8 

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Data Int8 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 #

toConstr :: Int8 -> Constr #

dataTypeOf :: Int8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) #

gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

Num Int8 

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Ord Int8 

Methods

compare :: Int8 -> Int8 -> Ordering #

(<) :: Int8 -> Int8 -> Bool #

(<=) :: Int8 -> Int8 -> Bool #

(>) :: Int8 -> Int8 -> Bool #

(>=) :: Int8 -> Int8 -> Bool #

max :: Int8 -> Int8 -> Int8 #

min :: Int8 -> Int8 -> Int8 #

Read Int8 
Real Int8 

Methods

toRational :: Int8 -> Rational #

Show Int8 

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Ix Int8 

Methods

range :: (Int8, Int8) -> [Int8] #

index :: (Int8, Int8) -> Int8 -> Int #

unsafeIndex :: (Int8, Int8) -> Int8 -> Int

inRange :: (Int8, Int8) -> Int8 -> Bool #

rangeSize :: (Int8, Int8) -> Int #

unsafeRangeSize :: (Int8, Int8) -> Int

Storable Int8 

Methods

sizeOf :: Int8 -> Int #

alignment :: Int8 -> Int #

peekElemOff :: Ptr Int8 -> Int -> IO Int8 #

pokeElemOff :: Ptr Int8 -> Int -> Int8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int8 #

pokeByteOff :: Ptr b -> Int -> Int8 -> IO () #

peek :: Ptr Int8 -> IO Int8 #

poke :: Ptr Int8 -> Int8 -> IO () #

Bits Int8 
FiniteBits Int8 
HasNegation Int8 # 

Methods

negate :: Int8 -> Int8 #

Integral Int8 # 

Methods

fromInteger :: Integer -> Int8 #

IsIntegral Int8 # 

Methods

toInteger :: Int8 -> Integer #

Additive Int8 # 

Methods

azero :: Int8 #

(+) :: Int8 -> Int8 -> Int8 #

scale :: IsNatural n => n -> Int8 -> Int8 #

IDivisible Int8 # 

Methods

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

Multiplicative Int8 # 

Methods

midentity :: Int8 #

(*) :: Int8 -> Int8 -> Int8 #

(^) :: (IsNatural n, IDivisible n) => Int8 -> n -> Int8 #

Subtractive Int8 # 

Associated Types

type Difference Int8 :: * #

Methods

(-) :: Int8 -> Int8 -> Difference Int8 #

NormalForm Int8 # 

Methods

toNormalForm :: Int8 -> () #

PrimMemoryComparable Int8 # 
PrimType Int8 # 
IntegralCast Int8 Word8 # 

Methods

integralCast :: Int8 -> Word8 #

IntegralCast Word8 Int8 # 

Methods

integralCast :: Word8 -> Int8 #

IntegralUpsize Int8 Int # 

Methods

integralUpsize :: Int8 -> Int #

IntegralUpsize Int8 Int16 # 

Methods

integralUpsize :: Int8 -> Int16 #

IntegralUpsize Int8 Int32 # 

Methods

integralUpsize :: Int8 -> Int32 #

IntegralUpsize Int8 Int64 # 

Methods

integralUpsize :: Int8 -> Int64 #

IntegralDownsize Int Int8 # 
IntegralDownsize Int64 Int8 # 
IntegralDownsize Integer Int8 # 
From Int8 Int # 

Methods

from :: Int8 -> Int #

From Int8 Int16 # 

Methods

from :: Int8 -> Int16 #

From Int8 Int32 # 

Methods

from :: Int8 -> Int32 #

From Int8 Int64 # 

Methods

from :: Int8 -> Int64 #

type Difference Int8 # 

data Int16 :: * #

16-bit signed integer type

Instances

Bounded Int16 
Enum Int16 
Eq Int16 

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Integral Int16 
Data Int16 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 #

toConstr :: Int16 -> Constr #

dataTypeOf :: Int16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) #

gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

Num Int16 
Ord Int16 

Methods

compare :: Int16 -> Int16 -> Ordering #

(<) :: Int16 -> Int16 -> Bool #

(<=) :: Int16 -> Int16 -> Bool #

(>) :: Int16 -> Int16 -> Bool #

(>=) :: Int16 -> Int16 -> Bool #

max :: Int16 -> Int16 -> Int16 #

min :: Int16 -> Int16 -> Int16 #

Read Int16 
Real Int16 

Methods

toRational :: Int16 -> Rational #

Show Int16 

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Ix Int16 
Storable Int16 

Methods

sizeOf :: Int16 -> Int #

alignment :: Int16 -> Int #

peekElemOff :: Ptr Int16 -> Int -> IO Int16 #

pokeElemOff :: Ptr Int16 -> Int -> Int16 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int16 #

pokeByteOff :: Ptr b -> Int -> Int16 -> IO () #

peek :: Ptr Int16 -> IO Int16 #

poke :: Ptr Int16 -> Int16 -> IO () #

Bits Int16 
FiniteBits Int16 
HasNegation Int16 # 

Methods

negate :: Int16 -> Int16 #

Integral Int16 # 

Methods

fromInteger :: Integer -> Int16 #

IsIntegral Int16 # 

Methods

toInteger :: Int16 -> Integer #

Additive Int16 # 

Methods

azero :: Int16 #

(+) :: Int16 -> Int16 -> Int16 #

scale :: IsNatural n => n -> Int16 -> Int16 #

IDivisible Int16 # 

Methods

div :: Int16 -> Int16 -> Int16 #

mod :: Int16 -> Int16 -> Int16 #

divMod :: Int16 -> Int16 -> (Int16, Int16) #

Multiplicative Int16 # 

Methods

midentity :: Int16 #

(*) :: Int16 -> Int16 -> Int16 #

(^) :: (IsNatural n, IDivisible n) => Int16 -> n -> Int16 #

Subtractive Int16 # 

Associated Types

type Difference Int16 :: * #

Methods

(-) :: Int16 -> Int16 -> Difference Int16 #

NormalForm Int16 # 

Methods

toNormalForm :: Int16 -> () #

PrimMemoryComparable Int16 # 
PrimType Int16 # 
IntegralCast Int16 Word16 # 

Methods

integralCast :: Int16 -> Word16 #

IntegralCast Word16 Int16 # 

Methods

integralCast :: Word16 -> Int16 #

IntegralUpsize Int8 Int16 # 

Methods

integralUpsize :: Int8 -> Int16 #

IntegralUpsize Int16 Int # 

Methods

integralUpsize :: Int16 -> Int #

IntegralUpsize Int16 Int32 # 
IntegralUpsize Int16 Int64 # 
IntegralUpsize Word8 Int16 # 
IntegralDownsize Int Int16 # 
IntegralDownsize Int64 Int16 # 
IntegralDownsize Integer Int16 # 
From Int8 Int16 # 

Methods

from :: Int8 -> Int16 #

From Int16 Int # 

Methods

from :: Int16 -> Int #

From Int16 Int32 # 

Methods

from :: Int16 -> Int32 #

From Int16 Int64 # 

Methods

from :: Int16 -> Int64 #

From Word8 Int16 # 

Methods

from :: Word8 -> Int16 #

type Difference Int16 # 

data Int32 :: * #

32-bit signed integer type

Instances

Bounded Int32 
Enum Int32 
Eq Int32 

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Integral Int32 
Data Int32 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 #

toConstr :: Int32 -> Constr #

dataTypeOf :: Int32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) #

gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

Num Int32 
Ord Int32 

Methods

compare :: Int32 -> Int32 -> Ordering #

(<) :: Int32 -> Int32 -> Bool #

(<=) :: Int32 -> Int32 -> Bool #

(>) :: Int32 -> Int32 -> Bool #

(>=) :: Int32 -> Int32 -> Bool #

max :: Int32 -> Int32 -> Int32 #

min :: Int32 -> Int32 -> Int32 #

Read Int32 
Real Int32 

Methods

toRational :: Int32 -> Rational #

Show Int32 

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Ix Int32 
Storable Int32 

Methods

sizeOf :: Int32 -> Int #

alignment :: Int32 -> Int #

peekElemOff :: Ptr Int32 -> Int -> IO Int32 #

pokeElemOff :: Ptr Int32 -> Int -> Int32 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int32 #

pokeByteOff :: Ptr b -> Int -> Int32 -> IO () #

peek :: Ptr Int32 -> IO Int32 #

poke :: Ptr Int32 -> Int32 -> IO () #

Bits Int32 
FiniteBits Int32 
HasNegation Int32 # 

Methods

negate :: Int32 -> Int32 #

Integral Int32 # 

Methods

fromInteger :: Integer -> Int32 #

IsIntegral Int32 # 

Methods

toInteger :: Int32 -> Integer #

Additive Int32 # 

Methods

azero :: Int32 #

(+) :: Int32 -> Int32 -> Int32 #

scale :: IsNatural n => n -> Int32 -> Int32 #

IDivisible Int32 # 

Methods

div :: Int32 -> Int32 -> Int32 #

mod :: Int32 -> Int32 -> Int32 #

divMod :: Int32 -> Int32 -> (Int32, Int32) #

Multiplicative Int32 # 

Methods

midentity :: Int32 #

(*) :: Int32 -> Int32 -> Int32 #

(^) :: (IsNatural n, IDivisible n) => Int32 -> n -> Int32 #

Subtractive Int32 # 

Associated Types

type Difference Int32 :: * #

Methods

(-) :: Int32 -> Int32 -> Difference Int32 #

NormalForm Int32 # 

Methods

toNormalForm :: Int32 -> () #

PrimMemoryComparable Int32 # 
PrimType Int32 # 
IntegralCast Int32 Word32 # 

Methods

integralCast :: Int32 -> Word32 #

IntegralCast Word32 Int32 # 

Methods

integralCast :: Word32 -> Int32 #

IntegralUpsize Int8 Int32 # 

Methods

integralUpsize :: Int8 -> Int32 #

IntegralUpsize Int16 Int32 # 
IntegralUpsize Int32 Int # 

Methods

integralUpsize :: Int32 -> Int #

IntegralUpsize Int32 Int64 # 
IntegralUpsize Word8 Int32 # 
IntegralDownsize Int Int32 # 
IntegralDownsize Int64 Int32 # 
IntegralDownsize Integer Int32 # 
From Int8 Int32 # 

Methods

from :: Int8 -> Int32 #

From Int16 Int32 # 

Methods

from :: Int16 -> Int32 #

From Int32 Int # 

Methods

from :: Int32 -> Int #

From Int32 Int64 # 

Methods

from :: Int32 -> Int64 #

From Word8 Int32 # 

Methods

from :: Word8 -> Int32 #

type Difference Int32 # 

data Int64 :: * #

64-bit signed integer type

Instances

Bounded Int64 
Enum Int64 
Eq Int64 

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Integral Int64 
Data Int64 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 #

toConstr :: Int64 -> Constr #

dataTypeOf :: Int64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) #

gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

Num Int64 
Ord Int64 

Methods

compare :: Int64 -> Int64 -> Ordering #

(<) :: Int64 -> Int64 -> Bool #

(<=) :: Int64 -> Int64 -> Bool #

(>) :: Int64 -> Int64 -> Bool #

(>=) :: Int64 -> Int64 -> Bool #

max :: Int64 -> Int64 -> Int64 #

min :: Int64 -> Int64 -> Int64 #

Read Int64 
Real Int64 

Methods

toRational :: Int64 -> Rational #

Show Int64 

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Ix Int64 
Storable Int64 

Methods

sizeOf :: Int64 -> Int #

alignment :: Int64 -> Int #

peekElemOff :: Ptr Int64 -> Int -> IO Int64 #

pokeElemOff :: Ptr Int64 -> Int -> Int64 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int64 #

pokeByteOff :: Ptr b -> Int -> Int64 -> IO () #

peek :: Ptr Int64 -> IO Int64 #

poke :: Ptr Int64 -> Int64 -> IO () #

Bits Int64 
FiniteBits Int64 
HasNegation Int64 # 

Methods

negate :: Int64 -> Int64 #

Integral Int64 # 

Methods

fromInteger :: Integer -> Int64 #

IsIntegral Int64 # 

Methods

toInteger :: Int64 -> Integer #

Additive Int64 # 

Methods

azero :: Int64 #

(+) :: Int64 -> Int64 -> Int64 #

scale :: IsNatural n => n -> Int64 -> Int64 #

IDivisible Int64 # 

Methods

div :: Int64 -> Int64 -> Int64 #

mod :: Int64 -> Int64 -> Int64 #

divMod :: Int64 -> Int64 -> (Int64, Int64) #

Multiplicative Int64 # 

Methods

midentity :: Int64 #

(*) :: Int64 -> Int64 -> Int64 #

(^) :: (IsNatural n, IDivisible n) => Int64 -> n -> Int64 #

Subtractive Int64 # 

Associated Types

type Difference Int64 :: * #

Methods

(-) :: Int64 -> Int64 -> Difference Int64 #

NormalForm Int64 # 

Methods

toNormalForm :: Int64 -> () #

PrimMemoryComparable Int64 # 
PrimType Int64 # 
IntegralCast Int64 Word64 # 

Methods

integralCast :: Int64 -> Word64 #

IntegralCast Word64 Int64 # 

Methods

integralCast :: Word64 -> Int64 #

IntegralUpsize Int Int64 # 

Methods

integralUpsize :: Int -> Int64 #

IntegralUpsize Int8 Int64 # 

Methods

integralUpsize :: Int8 -> Int64 #

IntegralUpsize Int16 Int64 # 
IntegralUpsize Int32 Int64 # 
IntegralUpsize Word8 Int64 # 
IntegralDownsize Int64 Int # 
IntegralDownsize Int64 Int8 # 
IntegralDownsize Int64 Int16 # 
IntegralDownsize Int64 Int32 # 
IntegralDownsize Integer Int64 # 
From Int Int64 # 

Methods

from :: Int -> Int64 #

From Int8 Int64 # 

Methods

from :: Int8 -> Int64 #

From Int16 Int64 # 

Methods

from :: Int16 -> Int64 #

From Int32 Int64 # 

Methods

from :: Int32 -> Int64 #

From Word8 Int64 # 

Methods

from :: Word8 -> Int64 #

type Difference Int64 # 

data Word8 :: * #

8-bit unsigned integer type

Instances

Bounded Word8 
Enum Word8 
Eq Word8 

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Integral Word8 
Data Word8 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 #

toConstr :: Word8 -> Constr #

dataTypeOf :: Word8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) #

gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

Num Word8 
Ord Word8 

Methods

compare :: Word8 -> Word8 -> Ordering #

(<) :: Word8 -> Word8 -> Bool #

(<=) :: Word8 -> Word8 -> Bool #

(>) :: Word8 -> Word8 -> Bool #

(>=) :: Word8 -> Word8 -> Bool #

max :: Word8 -> Word8 -> Word8 #

min :: Word8 -> Word8 -> Word8 #

Read Word8 
Real Word8 

Methods

toRational :: Word8 -> Rational #

Show Word8 

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Ix Word8 
Storable Word8 

Methods

sizeOf :: Word8 -> Int #

alignment :: Word8 -> Int #

peekElemOff :: Ptr Word8 -> Int -> IO Word8 #

pokeElemOff :: Ptr Word8 -> Int -> Word8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word8 #

pokeByteOff :: Ptr b -> Int -> Word8 -> IO () #

peek :: Ptr Word8 -> IO Word8 #

poke :: Ptr Word8 -> Word8 -> IO () #

Bits Word8 
FiniteBits Word8 
HasNegation Word8 # 

Methods

negate :: Word8 -> Word8 #

Integral Word8 # 

Methods

fromInteger :: Integer -> Word8 #

IsNatural Word8 # 

Methods

toNatural :: Word8 -> Natural #

IsIntegral Word8 # 

Methods

toInteger :: Word8 -> Integer #

Additive Word8 # 

Methods

azero :: Word8 #

(+) :: Word8 -> Word8 -> Word8 #

scale :: IsNatural n => n -> Word8 -> Word8 #

IDivisible Word8 # 

Methods

div :: Word8 -> Word8 -> Word8 #

mod :: Word8 -> Word8 -> Word8 #

divMod :: Word8 -> Word8 -> (Word8, Word8) #

Multiplicative Word8 # 

Methods

midentity :: Word8 #

(*) :: Word8 -> Word8 -> Word8 #

(^) :: (IsNatural n, IDivisible n) => Word8 -> n -> Word8 #

Subtractive Word8 # 

Associated Types

type Difference Word8 :: * #

Methods

(-) :: Word8 -> Word8 -> Difference Word8 #

NormalForm Word8 # 

Methods

toNormalForm :: Word8 -> () #

PrimMemoryComparable Word8 # 
PrimType Word8 # 
IntegralCast Int8 Word8 # 

Methods

integralCast :: Int8 -> Word8 #

IntegralCast Word8 Int8 # 

Methods

integralCast :: Word8 -> Int8 #

IntegralUpsize Word8 Int # 

Methods

integralUpsize :: Word8 -> Int #

IntegralUpsize Word8 Int16 # 
IntegralUpsize Word8 Int32 # 
IntegralUpsize Word8 Int64 # 
IntegralUpsize Word8 Word # 

Methods

integralUpsize :: Word8 -> Word #

IntegralUpsize Word8 Word16 # 
IntegralUpsize Word8 Word32 # 
IntegralUpsize Word8 Word64 # 
IntegralDownsize Integer Word8 # 
IntegralDownsize Word Word8 # 
IntegralDownsize Word16 Word8 # 
IntegralDownsize Word32 Word8 # 
IntegralDownsize Word64 Word8 # 
IntegralDownsize Natural Word8 # 
From Word8 Int # 

Methods

from :: Word8 -> Int #

From Word8 Int16 # 

Methods

from :: Word8 -> Int16 #

From Word8 Int32 # 

Methods

from :: Word8 -> Int32 #

From Word8 Int64 # 

Methods

from :: Word8 -> Int64 #

From Word8 Word # 

Methods

from :: Word8 -> Word #

From Word8 Word16 # 

Methods

from :: Word8 -> Word16 #

From Word8 Word32 # 

Methods

from :: Word8 -> Word32 #

From Word8 Word64 # 

Methods

from :: Word8 -> Word64 #

From Word8 Word128 # 

Methods

from :: Word8 -> Word128 #

From Word8 Word256 # 

Methods

from :: Word8 -> Word256 #

From AsciiString (UArray Word8) # 
From String (UArray Word8) # 

Methods

from :: String -> UArray Word8 #

TryFrom (UArray Word8) String # 
(KnownNat n, NatWithinBound Word8 n) => From (Zn n) Word8 # 

Methods

from :: Zn n -> Word8 #

(KnownNat n, NatWithinBound Word8 n) => From (Zn64 n) Word8 # 

Methods

from :: Zn64 n -> Word8 #

type Difference Word8 # 

data Word16 :: * #

16-bit unsigned integer type

Instances

Bounded Word16 
Enum Word16 
Eq Word16 

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Integral Word16 
Data Word16 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 #

toConstr :: Word16 -> Constr #

dataTypeOf :: Word16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) #

gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

Num Word16 
Ord Word16 
Read Word16 
Real Word16 
Show Word16 
Ix Word16 
Storable Word16 
Bits Word16 
FiniteBits Word16 
HasNegation Word16 # 

Methods

negate :: Word16 -> Word16 #

Integral Word16 # 
ByteSwap Word16 # 

Methods

byteSwap :: Word16 -> Word16

IsNatural Word16 # 

Methods

toNatural :: Word16 -> Natural #

IsIntegral Word16 # 

Methods

toInteger :: Word16 -> Integer #

Additive Word16 # 

Methods

azero :: Word16 #

(+) :: Word16 -> Word16 -> Word16 #

scale :: IsNatural n => n -> Word16 -> Word16 #

IDivisible Word16 # 

Methods

div :: Word16 -> Word16 -> Word16 #

mod :: Word16 -> Word16 -> Word16 #

divMod :: Word16 -> Word16 -> (Word16, Word16) #

Multiplicative Word16 # 

Methods

midentity :: Word16 #

(*) :: Word16 -> Word16 -> Word16 #

(^) :: (IsNatural n, IDivisible n) => Word16 -> n -> Word16 #

Subtractive Word16 # 

Associated Types

type Difference Word16 :: * #

NormalForm Word16 # 

Methods

toNormalForm :: Word16 -> () #

PrimMemoryComparable Word16 # 
PrimType Word16 # 
IntegralCast Int16 Word16 # 

Methods

integralCast :: Int16 -> Word16 #

IntegralCast Word16 Int16 # 

Methods

integralCast :: Word16 -> Int16 #

IntegralUpsize Word8 Word16 # 
IntegralUpsize Word16 Word # 
IntegralUpsize Word16 Word32 # 
IntegralUpsize Word16 Word64 # 
IntegralDownsize Integer Word16 # 
IntegralDownsize Word Word16 # 
IntegralDownsize Word16 Word8 # 
IntegralDownsize Word32 Word16 # 
IntegralDownsize Word64 Word16 # 
IntegralDownsize Natural Word16 # 
From Word8 Word16 # 

Methods

from :: Word8 -> Word16 #

From Word16 Word # 

Methods

from :: Word16 -> Word #

From Word16 Word32 # 

Methods

from :: Word16 -> Word32 #

From Word16 Word64 # 

Methods

from :: Word16 -> Word64 #

From Word16 Word128 # 

Methods

from :: Word16 -> Word128 #

From Word16 Word256 # 

Methods

from :: Word16 -> Word256 #

(KnownNat n, NatWithinBound Word16 n) => From (Zn n) Word16 # 

Methods

from :: Zn n -> Word16 #

(KnownNat n, NatWithinBound Word16 n) => From (Zn64 n) Word16 # 

Methods

from :: Zn64 n -> Word16 #

type Difference Word16 # 

data Word32 :: * #

32-bit unsigned integer type

Instances

Bounded Word32 
Enum Word32 
Eq Word32 

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Integral Word32 
Data Word32 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 #

toConstr :: Word32 -> Constr #

dataTypeOf :: Word32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) #

gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

Num Word32 
Ord Word32 
Read Word32 
Real Word32 
Show Word32 
Ix Word32 
Storable Word32 
Bits Word32 
FiniteBits Word32 
HasNegation Word32 # 

Methods

negate :: Word32 -> Word32 #

Integral Word32 # 
ByteSwap Word32 # 

Methods

byteSwap :: Word32 -> Word32

IsNatural Word32 # 

Methods

toNatural :: Word32 -> Natural #

IsIntegral Word32 # 

Methods

toInteger :: Word32 -> Integer #

Additive Word32 # 

Methods

azero :: Word32 #

(+) :: Word32 -> Word32 -> Word32 #

scale :: IsNatural n => n -> Word32 -> Word32 #

IDivisible Word32 # 

Methods

div :: Word32 -> Word32 -> Word32 #

mod :: Word32 -> Word32 -> Word32 #

divMod :: Word32 -> Word32 -> (Word32, Word32) #

Multiplicative Word32 # 

Methods

midentity :: Word32 #

(*) :: Word32 -> Word32 -> Word32 #

(^) :: (IsNatural n, IDivisible n) => Word32 -> n -> Word32 #

Subtractive Word32 # 

Associated Types

type Difference Word32 :: * #

NormalForm Word32 # 

Methods

toNormalForm :: Word32 -> () #

PrimMemoryComparable Word32 # 
PrimType Word32 # 
IntegralCast Int32 Word32 # 

Methods

integralCast :: Int32 -> Word32 #

IntegralCast Word32 Int32 # 

Methods

integralCast :: Word32 -> Int32 #

IntegralUpsize Word8 Word32 # 
IntegralUpsize Word16 Word32 # 
IntegralUpsize Word32 Word # 
IntegralUpsize Word32 Word64 # 
IntegralDownsize Integer Word32 # 
IntegralDownsize Word Word32 # 
IntegralDownsize Word32 Word8 # 
IntegralDownsize Word32 Word16 # 
IntegralDownsize Word64 Word32 # 
IntegralDownsize Natural Word32 # 
From Word8 Word32 # 

Methods

from :: Word8 -> Word32 #

From Word16 Word32 # 

Methods

from :: Word16 -> Word32 #

From Word32 Word # 

Methods

from :: Word32 -> Word #

From Word32 Word64 # 

Methods

from :: Word32 -> Word64 #

From Word32 Word128 # 

Methods

from :: Word32 -> Word128 #

From Word32 Word256 # 

Methods

from :: Word32 -> Word256 #

(KnownNat n, NatWithinBound Word32 n) => From (Zn n) Word32 # 

Methods

from :: Zn n -> Word32 #

(KnownNat n, NatWithinBound Word32 n) => From (Zn64 n) Word32 # 

Methods

from :: Zn64 n -> Word32 #

type Difference Word32 # 

data Word64 :: * #

64-bit unsigned integer type

Instances

Bounded Word64 
Enum Word64 
Eq Word64 

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Integral Word64 
Data Word64 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 #

toConstr :: Word64 -> Constr #

dataTypeOf :: Word64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) #

gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

Num Word64 
Ord Word64 
Read Word64 
Real Word64 
Show Word64 
Ix Word64 
Storable Word64 
Bits Word64 
FiniteBits Word64 
HasNegation Word64 # 

Methods

negate :: Word64 -> Word64 #

Integral Word64 # 
ByteSwap Word64 # 

Methods

byteSwap :: Word64 -> Word64

IsNatural Word64 # 

Methods

toNatural :: Word64 -> Natural #

IsIntegral Word64 # 

Methods

toInteger :: Word64 -> Integer #

Additive Word64 # 

Methods

azero :: Word64 #

(+) :: Word64 -> Word64 -> Word64 #

scale :: IsNatural n => n -> Word64 -> Word64 #

IDivisible Word64 # 

Methods

div :: Word64 -> Word64 -> Word64 #

mod :: Word64 -> Word64 -> Word64 #

divMod :: Word64 -> Word64 -> (Word64, Word64) #

Multiplicative Word64 # 

Methods

midentity :: Word64 #

(*) :: Word64 -> Word64 -> Word64 #

(^) :: (IsNatural n, IDivisible n) => Word64 -> n -> Word64 #

Subtractive Word64 # 

Associated Types

type Difference Word64 :: * #

NormalForm Word64 # 

Methods

toNormalForm :: Word64 -> () #

PrimMemoryComparable Word64 # 
PrimType Word64 # 
IntegralCast Int64 Word64 # 

Methods

integralCast :: Int64 -> Word64 #

IntegralCast Word64 Int64 # 

Methods

integralCast :: Word64 -> Int64 #

IntegralUpsize Word Word64 # 
IntegralUpsize Word8 Word64 # 
IntegralUpsize Word16 Word64 # 
IntegralUpsize Word32 Word64 # 
IntegralDownsize Integer Word64 # 
IntegralDownsize Word64 Word8 # 
IntegralDownsize Word64 Word16 # 
IntegralDownsize Word64 Word32 # 
IntegralDownsize Natural Word64 # 
From Word Word64 # 

Methods

from :: Word -> Word64 #

From Word8 Word64 # 

Methods

from :: Word8 -> Word64 #

From Word16 Word64 # 

Methods

from :: Word16 -> Word64 #

From Word32 Word64 # 

Methods

from :: Word32 -> Word64 #

From Word64 Word128 # 

Methods

from :: Word64 -> Word128 #

From Word64 Word256 # 

Methods

from :: Word64 -> Word256 #

(KnownNat n, NatWithinBound Word64 n) => From (Zn n) Word64 # 

Methods

from :: Zn n -> Word64 #

From (Zn64 n) Word64 # 

Methods

from :: Zn64 n -> Word64 #

type Difference Word64 # 

data Word :: * #

A Word is an unsigned integral type, with the same size as Int.

Instances

Bounded Word 
Enum Word 

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Eq Word 

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Integral Word 

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Data Word 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word #

toConstr :: Word -> Constr #

dataTypeOf :: Word -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

Num Word 

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Ord Word 

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Read Word 
Real Word 

Methods

toRational :: Word -> Rational #

Show Word 

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Storable Word 

Methods

sizeOf :: Word -> Int #

alignment :: Word -> Int #

peekElemOff :: Ptr Word -> Int -> IO Word #

pokeElemOff :: Ptr Word -> Int -> Word -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word #

pokeByteOff :: Ptr b -> Int -> Word -> IO () #

peek :: Ptr Word -> IO Word #

poke :: Ptr Word -> Word -> IO () #

Bits Word 
FiniteBits Word 
HasNegation Word # 

Methods

negate :: Word -> Word #

Integral Word # 

Methods

fromInteger :: Integer -> Word #

IsNatural Word # 

Methods

toNatural :: Word -> Natural #

IsIntegral Word # 

Methods

toInteger :: Word -> Integer #

Additive Word # 

Methods

azero :: Word #

(+) :: Word -> Word -> Word #

scale :: IsNatural n => n -> Word -> Word #

IDivisible Word # 

Methods

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

divMod :: Word -> Word -> (Word, Word) #

Multiplicative Word # 

Methods

midentity :: Word #

(*) :: Word -> Word -> Word #

(^) :: (IsNatural n, IDivisible n) => Word -> n -> Word #

Subtractive Word # 

Associated Types

type Difference Word :: * #

Methods

(-) :: Word -> Word -> Difference Word #

NormalForm Word # 

Methods

toNormalForm :: Word -> () #

PrimMemoryComparable Word # 
PrimType Word # 
IntegralCast Int Word # 

Methods

integralCast :: Int -> Word #

IntegralCast Word Int # 

Methods

integralCast :: Word -> Int #

IntegralUpsize Word Word64 # 
IntegralUpsize Word8 Word # 

Methods

integralUpsize :: Word8 -> Word #

IntegralUpsize Word16 Word # 
IntegralUpsize Word32 Word # 
IntegralDownsize Word Word8 # 
IntegralDownsize Word Word16 # 
IntegralDownsize Word Word32 # 
From Int Word # 

Methods

from :: Int -> Word #

From Word Int # 

Methods

from :: Word -> Int #

From Word Word64 # 

Methods

from :: Word -> Word64 #

From Word8 Word # 

Methods

from :: Word8 -> Word #

From Word16 Word # 

Methods

from :: Word16 -> Word #

From Word32 Word # 

Methods

from :: Word32 -> Word #

IntegralCast Word (CountOf ty) # 

Methods

integralCast :: Word -> CountOf ty #

IntegralCast Word (Offset ty) # 

Methods

integralCast :: Word -> Offset ty #

Functor (URec Word) 

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Foldable (URec Word) 

Methods

fold :: Monoid m => URec Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec Word a -> m #

foldr :: (a -> b -> b) -> b -> URec Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec Word a -> b #

foldl :: (b -> a -> b) -> b -> URec Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec Word a -> b #

foldr1 :: (a -> a -> a) -> URec Word a -> a #

foldl1 :: (a -> a -> a) -> URec Word a -> a #

toList :: URec Word a -> [a] #

null :: URec Word a -> Bool #

length :: URec Word a -> Int #

elem :: Eq a => a -> URec Word a -> Bool #

maximum :: Ord a => URec Word a -> a #

minimum :: Ord a => URec Word a -> a #

sum :: Num a => URec Word a -> a #

product :: Num a => URec Word a -> a #

Generic1 (URec Word) 

Associated Types

type Rep1 (URec Word :: * -> *) :: * -> * #

Methods

from1 :: URec Word a -> Rep1 (URec Word) a #

to1 :: Rep1 (URec Word) a -> URec Word a #

From (CountOf ty) Word # 

Methods

from :: CountOf ty -> Word #

Eq (URec Word p) 

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

Ord (URec Word p) 

Methods

compare :: URec Word p -> URec Word p -> Ordering #

(<) :: URec Word p -> URec Word p -> Bool #

(<=) :: URec Word p -> URec Word p -> Bool #

(>) :: URec Word p -> URec Word p -> Bool #

(>=) :: URec Word p -> URec Word p -> Bool #

max :: URec Word p -> URec Word p -> URec Word p #

min :: URec Word p -> URec Word p -> URec Word p #

Show (URec Word p) 

Methods

showsPrec :: Int -> URec Word p -> ShowS #

show :: URec Word p -> String #

showList :: [URec Word p] -> ShowS #

Generic (URec Word p) 

Associated Types

type Rep (URec Word p) :: * -> * #

Methods

from :: URec Word p -> Rep (URec Word p) x #

to :: Rep (URec Word p) x -> URec Word p #

data URec Word

Used for marking occurrences of Word#

data URec Word = UWord {}
type Difference Word # 
type Rep1 (URec Word) 
type Rep1 (URec Word) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just Symbol "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UWord))
type Rep (URec Word p) 
type Rep (URec Word p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just Symbol "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UWord))

data Double :: * #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Instances

Eq Double 

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Floating Double 
Data Double 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double #

toConstr :: Double -> Constr #

dataTypeOf :: Double -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Double) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

Ord Double 
Read Double 
RealFloat Double 
Storable Double 
HasNegation Double # 

Methods

negate :: Double -> Double #

Fractional Double # 
Integral Double # 
Additive Double # 

Methods

azero :: Double #

(+) :: Double -> Double -> Double #

scale :: IsNatural n => n -> Double -> Double #

Divisible Double # 

Methods

(/) :: Double -> Double -> Double #

Multiplicative Double # 

Methods

midentity :: Double #

(*) :: Double -> Double -> Double #

(^) :: (IsNatural n, IDivisible n) => Double -> n -> Double #

Subtractive Double # 

Associated Types

type Difference Double :: * #

NormalForm Double # 

Methods

toNormalForm :: Double -> () #

PrimType Double # 
Functor (URec Double) 

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Foldable (URec Double) 

Methods

fold :: Monoid m => URec Double m -> m #

foldMap :: Monoid m => (a -> m) -> URec Double a -> m #

foldr :: (a -> b -> b) -> b -> URec Double a -> b #

foldr' :: (a -> b -> b) -> b -> URec Double a -> b #

foldl :: (b -> a -> b) -> b -> URec Double a -> b #

foldl' :: (b -> a -> b) -> b -> URec Double a -> b #

foldr1 :: (a -> a -> a) -> URec Double a -> a #

foldl1 :: (a -> a -> a) -> URec Double a -> a #

toList :: URec Double a -> [a] #

null :: URec Double a -> Bool #

length :: URec Double a -> Int #

elem :: Eq a => a -> URec Double a -> Bool #

maximum :: Ord a => URec Double a -> a #

minimum :: Ord a => URec Double a -> a #

sum :: Num a => URec Double a -> a #

product :: Num a => URec Double a -> a #

Generic1 (URec Double) 

Associated Types

type Rep1 (URec Double :: * -> *) :: * -> * #

Methods

from1 :: URec Double a -> Rep1 (URec Double) a #

to1 :: Rep1 (URec Double) a -> URec Double a #

Eq (URec Double p) 

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Ord (URec Double p) 

Methods

compare :: URec Double p -> URec Double p -> Ordering #

(<) :: URec Double p -> URec Double p -> Bool #

(<=) :: URec Double p -> URec Double p -> Bool #

(>) :: URec Double p -> URec Double p -> Bool #

(>=) :: URec Double p -> URec Double p -> Bool #

max :: URec Double p -> URec Double p -> URec Double p #

min :: URec Double p -> URec Double p -> URec Double p #

Show (URec Double p) 

Methods

showsPrec :: Int -> URec Double p -> ShowS #

show :: URec Double p -> String #

showList :: [URec Double p] -> ShowS #

Generic (URec Double p) 

Associated Types

type Rep (URec Double p) :: * -> * #

Methods

from :: URec Double p -> Rep (URec Double p) x #

to :: Rep (URec Double p) x -> URec Double p #

data URec Double

Used for marking occurrences of Double#

type Difference Double # 
type Rep1 (URec Double) 
type Rep1 (URec Double) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UDouble" PrefixI True) (S1 (MetaSel (Just Symbol "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UDouble))
type Rep (URec Double p) 
type Rep (URec Double p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UDouble" PrefixI True) (S1 (MetaSel (Just Symbol "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UDouble))

data Float :: * #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Instances

Eq Float 

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Floating Float 
Data Float 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float #

toConstr :: Float -> Constr #

dataTypeOf :: Float -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Float) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

Ord Float 

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Read Float 
RealFloat Float 
Storable Float 

Methods

sizeOf :: Float -> Int #

alignment :: Float -> Int #

peekElemOff :: Ptr Float -> Int -> IO Float #

pokeElemOff :: Ptr Float -> Int -> Float -> IO () #

peekByteOff :: Ptr b -> Int -> IO Float #

pokeByteOff :: Ptr b -> Int -> Float -> IO () #

peek :: Ptr Float -> IO Float #

poke :: Ptr Float -> Float -> IO () #

HasNegation Float # 

Methods

negate :: Float -> Float #

Fractional Float # 
Integral Float # 

Methods

fromInteger :: Integer -> Float #

Additive Float # 

Methods

azero :: Float #

(+) :: Float -> Float -> Float #

scale :: IsNatural n => n -> Float -> Float #

Divisible Float # 

Methods

(/) :: Float -> Float -> Float #

Multiplicative Float # 

Methods

midentity :: Float #

(*) :: Float -> Float -> Float #

(^) :: (IsNatural n, IDivisible n) => Float -> n -> Float #

Subtractive Float # 

Associated Types

type Difference Float :: * #

Methods

(-) :: Float -> Float -> Difference Float #

NormalForm Float # 

Methods

toNormalForm :: Float -> () #

PrimType Float # 
Functor (URec Float) 

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Foldable (URec Float) 

Methods

fold :: Monoid m => URec Float m -> m #

foldMap :: Monoid m => (a -> m) -> URec Float a -> m #

foldr :: (a -> b -> b) -> b -> URec Float a -> b #

foldr' :: (a -> b -> b) -> b -> URec Float a -> b #

foldl :: (b -> a -> b) -> b -> URec Float a -> b #

foldl' :: (b -> a -> b) -> b -> URec Float a -> b #

foldr1 :: (a -> a -> a) -> URec Float a -> a #

foldl1 :: (a -> a -> a) -> URec Float a -> a #

toList :: URec Float a -> [a] #

null :: URec Float a -> Bool #

length :: URec Float a -> Int #

elem :: Eq a => a -> URec Float a -> Bool #

maximum :: Ord a => URec Float a -> a #

minimum :: Ord a => URec Float a -> a #

sum :: Num a => URec Float a -> a #

product :: Num a => URec Float a -> a #

Generic1 (URec Float) 

Associated Types

type Rep1 (URec Float :: * -> *) :: * -> * #

Methods

from1 :: URec Float a -> Rep1 (URec Float) a #

to1 :: Rep1 (URec Float) a -> URec Float a #

Eq (URec Float p) 

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Ord (URec Float p) 

Methods

compare :: URec Float p -> URec Float p -> Ordering #

(<) :: URec Float p -> URec Float p -> Bool #

(<=) :: URec Float p -> URec Float p -> Bool #

(>) :: URec Float p -> URec Float p -> Bool #

(>=) :: URec Float p -> URec Float p -> Bool #

max :: URec Float p -> URec Float p -> URec Float p #

min :: URec Float p -> URec Float p -> URec Float p #

Show (URec Float p) 

Methods

showsPrec :: Int -> URec Float p -> ShowS #

show :: URec Float p -> String #

showList :: [URec Float p] -> ShowS #

Generic (URec Float p) 

Associated Types

type Rep (URec Float p) :: * -> * #

Methods

from :: URec Float p -> Rep (URec Float p) x #

to :: Rep (URec Float p) x -> URec Float p #

data URec Float

Used for marking occurrences of Float#

type Difference Float # 
type Rep1 (URec Float) 
type Rep1 (URec Float) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UFloat" PrefixI True) (S1 (MetaSel (Just Symbol "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UFloat))
type Rep (URec Float p) 
type Rep (URec Float p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UFloat" PrefixI True) (S1 (MetaSel (Just Symbol "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UFloat))

data IO a :: * -> * #

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a.

There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.

Instances

Monad IO 

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Functor IO 

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Applicative IO 

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

Alternative IO 

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

MonadPlus IO 

Methods

mzero :: IO a #

mplus :: IO a -> IO a -> IO a #

PrimMonad IO # 

Associated Types

type PrimState (IO :: * -> *) :: * #

type PrimVar (IO :: * -> *) :: * -> * #

Monoid a => Monoid (IO a) 

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

type PrimState IO # 
type PrimVar IO # 

class IsList l where #

The IsList class and its methods are intended to be used in conjunction with the OverloadedLists extension.

Since: 4.7.0.0

Minimal complete definition

fromList, toList

Associated Types

type Item l :: * #

The Item type function returns the type of items of the structure l.

Methods

fromList :: [Item l] -> l #

The fromList function constructs the structure l from the given list of Item l

fromListN :: Int -> [Item l] -> l #

The fromListN function takes the input list's length as a hint. Its behaviour should be equivalent to fromList. The hint can be used to construct the structure l more efficiently compared to fromList. If the given hint does not equal to the input list's length the behaviour of fromListN is not specified.

toList :: l -> [Item l] #

The toList function extracts a list of Item l from the structure l. It should satisfy fromList . toList = id.

Instances

IsList CallStack

Be aware that 'fromList . toList = id' only for unfrozen CallStacks, since toList removes frozenness information.

Since: 4.9.0.0

Associated Types

type Item CallStack :: * #

IsList Version

Since: 4.8.0.0

Associated Types

type Item Version :: * #

IsList AsciiString # 
IsList String # 

Associated Types

type Item String :: * #

IsList [a] 

Associated Types

type Item [a] :: * #

Methods

fromList :: [Item [a]] -> [a] #

fromListN :: Int -> [Item [a]] -> [a] #

toList :: [a] -> [Item [a]] #

IsList (NonEmpty a) 

Associated Types

type Item (NonEmpty a) :: * #

Methods

fromList :: [Item (NonEmpty a)] -> NonEmpty a #

fromListN :: Int -> [Item (NonEmpty a)] -> NonEmpty a #

toList :: NonEmpty a -> [Item (NonEmpty a)] #

IsList c => IsList (NonEmpty c) # 

Associated Types

type Item (NonEmpty c) :: * #

Methods

fromList :: [Item (NonEmpty c)] -> NonEmpty c #

fromListN :: Int -> [Item (NonEmpty c)] -> NonEmpty c #

toList :: NonEmpty c -> [Item (NonEmpty c)] #

PrimType ty => IsList (Block ty) # 

Associated Types

type Item (Block ty) :: * #

Methods

fromList :: [Item (Block ty)] -> Block ty #

fromListN :: Int -> [Item (Block ty)] -> Block ty #

toList :: Block ty -> [Item (Block ty)] #

PrimType ty => IsList (UArray ty) # 

Associated Types

type Item (UArray ty) :: * #

Methods

fromList :: [Item (UArray ty)] -> UArray ty #

fromListN :: Int -> [Item (UArray ty)] -> UArray ty #

toList :: UArray ty -> [Item (UArray ty)] #

IsList (Array ty) # 

Associated Types

type Item (Array ty) :: * #

Methods

fromList :: [Item (Array ty)] -> Array ty #

fromListN :: Int -> [Item (Array ty)] -> Array ty #

toList :: Array ty -> [Item (Array ty)] #

class IsString a where #

Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).

Minimal complete definition

fromString

Methods

fromString :: String -> a #

Instances

IsString AsciiString # 
IsString String # 

Methods

fromString :: String -> String #

(~) * a Char => IsString [a] 

Methods

fromString :: String -> [a] #

IsString a => IsString (Identity a) 

Methods

fromString :: String -> Identity a #

IsString a => IsString (Const * a b) 

Methods

fromString :: String -> Const * a b #

class Generic a #

Representable types of kind *. This class is derivable in GHC with the DeriveGeneric flag on.

Minimal complete definition

from, to

Instances

Generic Bool 

Associated Types

type Rep Bool :: * -> * #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Generic Ordering 

Associated Types

type Rep Ordering :: * -> * #

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Generic () 

Associated Types

type Rep () :: * -> * #

Methods

from :: () -> Rep () x #

to :: Rep () x -> () #

Generic Void 

Associated Types

type Rep Void :: * -> * #

Methods

from :: Void -> Rep Void x #

to :: Rep Void x -> Void #

Generic Version 

Associated Types

type Rep Version :: * -> * #

Methods

from :: Version -> Rep Version x #

to :: Rep Version x -> Version #

Generic ExitCode 

Associated Types

type Rep ExitCode :: * -> * #

Methods

from :: ExitCode -> Rep ExitCode x #

to :: Rep ExitCode x -> ExitCode #

Generic All 

Associated Types

type Rep All :: * -> * #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Generic Any 

Associated Types

type Rep Any :: * -> * #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Generic Fixity 

Associated Types

type Rep Fixity :: * -> * #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic Associativity 

Associated Types

type Rep Associativity :: * -> * #

Generic SourceUnpackedness 
Generic SourceStrictness 
Generic DecidedStrictness 
Generic [a] 

Associated Types

type Rep [a] :: * -> * #

Methods

from :: [a] -> Rep [a] x #

to :: Rep [a] x -> [a] #

Generic (Maybe a) 

Associated Types

type Rep (Maybe a) :: * -> * #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Generic (V1 p) 

Associated Types

type Rep (V1 p) :: * -> * #

Methods

from :: V1 p -> Rep (V1 p) x #

to :: Rep (V1 p) x -> V1 p #

Generic (U1 p) 

Associated Types

type Rep (U1 p) :: * -> * #

Methods

from :: U1 p -> Rep (U1 p) x #

to :: Rep (U1 p) x -> U1 p #

Generic (Par1 p) 

Associated Types

type Rep (Par1 p) :: * -> * #

Methods

from :: Par1 p -> Rep (Par1 p) x #

to :: Rep (Par1 p) x -> Par1 p #

Generic (Identity a) 

Associated Types

type Rep (Identity a) :: * -> * #

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Generic (Min a) 

Associated Types

type Rep (Min a) :: * -> * #

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Generic (Max a) 

Associated Types

type Rep (Max a) :: * -> * #

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Generic (First a) 

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (WrappedMonoid m) 

Associated Types

type Rep (WrappedMonoid m) :: * -> * #

Generic (Option a) 

Associated Types

type Rep (Option a) :: * -> * #

Methods

from :: Option a -> Rep (Option a) x #

to :: Rep (Option a) x -> Option a #

Generic (NonEmpty a) 

Associated Types

type Rep (NonEmpty a) :: * -> * #

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

Generic (ZipList a) 

Associated Types

type Rep (ZipList a) :: * -> * #

Methods

from :: ZipList a -> Rep (ZipList a) x #

to :: Rep (ZipList a) x -> ZipList a #

Generic (Dual a) 

Associated Types

type Rep (Dual a) :: * -> * #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Generic (Endo a) 

Associated Types

type Rep (Endo a) :: * -> * #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Generic (Sum a) 

Associated Types

type Rep (Sum a) :: * -> * #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Generic (Product a) 

Associated Types

type Rep (Product a) :: * -> * #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Generic (First a) 

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (Either a b) 

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Generic (Rec1 f p) 

Associated Types

type Rep (Rec1 f p) :: * -> * #

Methods

from :: Rec1 f p -> Rep (Rec1 f p) x #

to :: Rep (Rec1 f p) x -> Rec1 f p #

Generic (URec Char p) 

Associated Types

type Rep (URec Char p) :: * -> * #

Methods

from :: URec Char p -> Rep (URec Char p) x #

to :: Rep (URec Char p) x -> URec Char p #

Generic (URec Double p) 

Associated Types

type Rep (URec Double p) :: * -> * #

Methods

from :: URec Double p -> Rep (URec Double p) x #

to :: Rep (URec Double p) x -> URec Double p #

Generic (URec Float p) 

Associated Types

type Rep (URec Float p) :: * -> * #

Methods

from :: URec Float p -> Rep (URec Float p) x #

to :: Rep (URec Float p) x -> URec Float p #

Generic (URec Int p) 

Associated Types

type Rep (URec Int p) :: * -> * #

Methods

from :: URec Int p -> Rep (URec Int p) x #

to :: Rep (URec Int p) x -> URec Int p #

Generic (URec Word p) 

Associated Types

type Rep (URec Word p) :: * -> * #

Methods

from :: URec Word p -> Rep (URec Word p) x #

to :: Rep (URec Word p) x -> URec Word p #

Generic (URec (Ptr ()) p) 

Associated Types

type Rep (URec (Ptr ()) p) :: * -> * #

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p #

Generic (a, b) 

Associated Types

type Rep (a, b) :: * -> * #

Methods

from :: (a, b) -> Rep (a, b) x #

to :: Rep (a, b) x -> (a, b) #

Generic (Arg a b) 

Associated Types

type Rep (Arg a b) :: * -> * #

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

Generic (WrappedMonad m a) 

Associated Types

type Rep (WrappedMonad m a) :: * -> * #

Methods

from :: WrappedMonad m a -> Rep (WrappedMonad m a) x #

to :: Rep (WrappedMonad m a) x -> WrappedMonad m a #

Generic (Proxy k t) 

Associated Types

type Rep (Proxy k t) :: * -> * #

Methods

from :: Proxy k t -> Rep (Proxy k t) x #

to :: Rep (Proxy k t) x -> Proxy k t #

Generic (K1 i c p) 

Associated Types

type Rep (K1 i c p) :: * -> * #

Methods

from :: K1 i c p -> Rep (K1 i c p) x #

to :: Rep (K1 i c p) x -> K1 i c p #

Generic ((:+:) f g p) 

Associated Types

type Rep ((:+:) f g p) :: * -> * #

Methods

from :: (f :+: g) p -> Rep ((f :+: g) p) x #

to :: Rep ((f :+: g) p) x -> (f :+: g) p #

Generic ((:*:) f g p) 

Associated Types

type Rep ((:*:) f g p) :: * -> * #

Methods

from :: (f :*: g) p -> Rep ((f :*: g) p) x #

to :: Rep ((f :*: g) p) x -> (f :*: g) p #

Generic ((:.:) f g p) 

Associated Types

type Rep ((:.:) f g p) :: * -> * #

Methods

from :: (f :.: g) p -> Rep ((f :.: g) p) x #

to :: Rep ((f :.: g) p) x -> (f :.: g) p #

Generic (a, b, c) 

Associated Types

type Rep (a, b, c) :: * -> * #

Methods

from :: (a, b, c) -> Rep (a, b, c) x #

to :: Rep (a, b, c) x -> (a, b, c) #

Generic (WrappedArrow a b c) 

Associated Types

type Rep (WrappedArrow a b c) :: * -> * #

Methods

from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x #

to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c #

Generic (Const k a b) 

Associated Types

type Rep (Const k a b) :: * -> * #

Methods

from :: Const k a b -> Rep (Const k a b) x #

to :: Rep (Const k a b) x -> Const k a b #

Generic (Alt k f a) 

Associated Types

type Rep (Alt k f a) :: * -> * #

Methods

from :: Alt k f a -> Rep (Alt k f a) x #

to :: Rep (Alt k f a) x -> Alt k f a #

Generic (M1 i c f p) 

Associated Types

type Rep (M1 i c f p) :: * -> * #

Methods

from :: M1 i c f p -> Rep (M1 i c f p) x #

to :: Rep (M1 i c f p) x -> M1 i c f p #

Generic (a, b, c, d) 

Associated Types

type Rep (a, b, c, d) :: * -> * #

Methods

from :: (a, b, c, d) -> Rep (a, b, c, d) x #

to :: Rep (a, b, c, d) x -> (a, b, c, d) #

Generic (a, b, c, d, e) 

Associated Types

type Rep (a, b, c, d, e) :: * -> * #

Methods

from :: (a, b, c, d, e) -> Rep (a, b, c, d, e) x #

to :: Rep (a, b, c, d, e) x -> (a, b, c, d, e) #

Generic (a, b, c, d, e, f) 

Associated Types

type Rep (a, b, c, d, e, f) :: * -> * #

Methods

from :: (a, b, c, d, e, f) -> Rep (a, b, c, d, e, f) x #

to :: Rep (a, b, c, d, e, f) x -> (a, b, c, d, e, f) #

Generic (a, b, c, d, e, f, g) 

Associated Types

type Rep (a, b, c, d, e, f, g) :: * -> * #

Methods

from :: (a, b, c, d, e, f, g) -> Rep (a, b, c, d, e, f, g) x #

to :: Rep (a, b, c, d, e, f, g) x -> (a, b, c, d, e, f, g) #

data Either a b :: * -> * -> * #

The Either type represents values with two possibilities: a value of type Either a b is either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Examples

The type Either String Int is the type of values which can be either a String or an Int. The Left constructor can be used only on Strings, and the Right constructor can be used only on Ints:

>>> let s = Left "foo" :: Either String Int
>>> s
Left "foo"
>>> let n = Right 3 :: Either String Int
>>> n
Right 3
>>> :type s
s :: Either String Int
>>> :type n
n :: Either String Int

The fmap from our Functor instance will ignore Left values, but will apply the supplied function to values contained in a Right:

>>> let s = Left "foo" :: Either String Int
>>> let n = Right 3 :: Either String Int
>>> fmap (*2) s
Left "foo"
>>> fmap (*2) n
Right 6

The Monad instance for Either allows us to chain together multiple actions which may fail, and fail overall if any of the individual steps failed. First we'll write a function that can either parse an Int from a Char, or fail.

>>> import Data.Char ( digitToInt, isDigit )
>>> :{
    let parseEither :: Char -> Either String Int
        parseEither c
          | isDigit c = Right (digitToInt c)
          | otherwise = Left "parse error"
>>> :}

The following should work, since both '1' and '2' can be parsed as Ints.

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither '1'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Right 3

But the following should fail overall, since the first operation where we attempt to parse 'm' as an Int will fail:

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither 'm'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Left "parse error"

Constructors

Left a 
Right b 

Instances

Bifunctor Either 

Methods

bimap :: (a -> b) -> (c -> d) -> Either a c -> Either b d #

first :: (a -> b) -> Either a c -> Either b c #

second :: (b -> c) -> Either a b -> Either a c #

Monad (Either e) 

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Functor (Either a) 

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

Applicative (Either e) 

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Foldable (Either a) 

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a -> m) -> Either a a -> m #

foldr :: (a -> b -> b) -> b -> Either a a -> b #

foldr' :: (a -> b -> b) -> b -> Either a a -> b #

foldl :: (b -> a -> b) -> b -> Either a a -> b #

foldl' :: (b -> a -> b) -> b -> Either a a -> b #

foldr1 :: (a -> a -> a) -> Either a a -> a #

foldl1 :: (a -> a -> a) -> Either a a -> a #

toList :: Either a a -> [a] #

null :: Either a a -> Bool #

length :: Either a a -> Int #

elem :: Eq a => a -> Either a a -> Bool #

maximum :: Ord a => Either a a -> a #

minimum :: Ord a => Either a a -> a #

sum :: Num a => Either a a -> a #

product :: Num a => Either a a -> a #

Generic1 (Either a) 

Associated Types

type Rep1 (Either a :: * -> *) :: * -> * #

Methods

from1 :: Either a a -> Rep1 (Either a) a #

to1 :: Rep1 (Either a) a -> Either a a #

MonadFailure (Either a) # 

Associated Types

type Failure (Either a :: * -> *) :: * #

Methods

mFail :: Failure (Either a) -> Either a () #

From (Maybe a) (Either () a) # 

Methods

from :: Maybe a -> Either () a #

(Eq b, Eq a) => Eq (Either a b) 

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

(Data a, Data b) => Data (Either a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> Either a b -> c (Either a b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) #

toConstr :: Either a b -> Constr #

dataTypeOf :: Either a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) #

gmapT :: (forall c. Data c => c -> c) -> Either a b -> Either a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

(Ord b, Ord a) => Ord (Either a b) 

Methods

compare :: Either a b -> Either a b -> Ordering #

(<) :: Either a b -> Either a b -> Bool #

(<=) :: Either a b -> Either a b -> Bool #

(>) :: Either a b -> Either a b -> Bool #

(>=) :: Either a b -> Either a b -> Bool #

max :: Either a b -> Either a b -> Either a b #

min :: Either a b -> Either a b -> Either a b #

(Read b, Read a) => Read (Either a b) 
(Show b, Show a) => Show (Either a b) 

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Generic (Either a b) 

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Semigroup (Either a b) 

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b => b -> Either a b -> Either a b #

(NormalForm l, NormalForm r) => NormalForm (Either l r) # 

Methods

toNormalForm :: Either l r -> () #

From (Either a b) (These a b) # 

Methods

from :: Either a b -> These a b #

type Rep1 (Either a) 
type Failure (Either a) # 
type Failure (Either a) = a
type Rep (Either a b) 
type (==) (Either k k1) a b 
type (==) (Either k k1) a b = EqEither k k1 a b

class Typeable * a => Data a where #

The Data class comprehends a fundamental primitive gfoldl for folding over constructor applications, say terms. This primitive can be instantiated in several ways to map over the immediate subterms of a term; see the gmap combinators later in this class. Indeed, a generic programmer does not necessarily need to use the ingenious gfoldl primitive but rather the intuitive gmap combinators. The gfoldl primitive is completed by means to query top-level constructors, to turn constructor representations into proper terms, and to list all possible datatype constructors. This completion allows us to serve generic programming scenarios like read, show, equality, term generation.

The combinators gmapT, gmapQ, gmapM, etc are all provided with default definitions in terms of gfoldl, leaving open the opportunity to provide datatype-specific definitions. (The inclusion of the gmap combinators as members of class Data allows the programmer or the compiler to derive specialised, and maybe more efficient code per datatype. Note: gfoldl is more higher-order than the gmap combinators. This is subject to ongoing benchmarking experiments. It might turn out that the gmap combinators will be moved out of the class Data.)

Conceptually, the definition of the gmap combinators in terms of the primitive gfoldl requires the identification of the gfoldl function arguments. Technically, we also need to identify the type constructor c for the construction of the result type from the folded term type.

In the definition of gmapQx combinators, we use phantom type constructors for the c in the type of gfoldl because the result type of a query does not involve the (polymorphic) type of the term argument. In the definition of gmapQl we simply use the plain constant type constructor because gfoldl is left-associative anyway and so it is readily suited to fold a left-associative binary operation over the immediate subterms. In the definition of gmapQr, extra effort is needed. We use a higher-order accumulation trick to mediate between left-associative constructor application vs. right-associative binary operation (e.g., (:)). When the query is meant to compute a value of type r, then the result type withing generic folding is r -> r. So the result of folding is a function to which we finally pass the right unit.

With the -XDeriveDataTypeable option, GHC can generate instances of the Data class automatically. For example, given the declaration

data T a b = C1 a b | C2 deriving (Typeable, Data)

GHC will generate an instance that is equivalent to

instance (Data a, Data b) => Data (T a b) where
    gfoldl k z (C1 a b) = z C1 `k` a `k` b
    gfoldl k z C2       = z C2

    gunfold k z c = case constrIndex c of
                        1 -> k (k (z C1))
                        2 -> z C2

    toConstr (C1 _ _) = con_C1
    toConstr C2       = con_C2

    dataTypeOf _ = ty_T

con_C1 = mkConstr ty_T "C1" [] Prefix
con_C2 = mkConstr ty_T "C2" [] Prefix
ty_T   = mkDataType "Module.T" [con_C1, con_C2]

This is suitable for datatypes that are exported transparently.

Minimal complete definition

gunfold, toConstr, dataTypeOf

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a #

Left-associative fold operation for constructor applications.

The type of gfoldl is a headache, but operationally it is a simple generalisation of a list fold.

The default definition for gfoldl is const id, which is suitable for abstract datatypes with no substructures.

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a #

Unfolding constructor applications

toConstr :: a -> Constr #

Obtaining the constructor from a given datum. For proper terms, this is meant to be the top-level constructor. Primitive datatypes are here viewed as potentially infinite sets of values (i.e., constructors).

dataTypeOf :: a -> DataType #

The outer type constructor of the type

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c a) #

Mediate types and unary type constructors. In Data instances of the form T a, dataCast1 should be defined as gcast1.

The default definition is const Nothing, which is appropriate for non-unary type constructors.

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a) #

Mediate types and binary type constructors. In Data instances of the form T a b, dataCast2 should be defined as gcast2.

The default definition is const Nothing, which is appropriate for non-binary type constructors.

gmapT :: (forall b. Data b => b -> b) -> a -> a #

A generic transformation that maps over the immediate subterms

The default definition instantiates the type constructor c in the type of gfoldl to an identity datatype constructor, using the isomorphism pair as injection and projection.

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #

A generic query with a left-associative binary operator

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #

A generic query with a right-associative binary operator

gmapQ :: (forall d. Data d => d -> u) -> a -> [u] #

A generic query that processes the immediate subterms and returns a list of results. The list is given in the same order as originally specified in the declaration of the data constructors.

gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u #

A generic query that processes one child by index (zero-based)

gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a #

A generic monadic transformation that maps over the immediate subterms

The default definition instantiates the type constructor c in the type of gfoldl to the monad datatype constructor, defining injection and projection using return and >>=.

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #

Transformation of at least one immediate subterm does not fail

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #

Transformation of one immediate subterm with success

Instances

Data Bool 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool #

toConstr :: Bool -> Constr #

dataTypeOf :: Bool -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Bool) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) #

gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

Data Char 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char #

toConstr :: Char -> Constr #

dataTypeOf :: Char -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Char) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) #

gmapT :: (forall b. Data b => b -> b) -> Char -> Char #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

Data Double 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double #

toConstr :: Double -> Constr #

dataTypeOf :: Double -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Double) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

Data Float 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float #

toConstr :: Float -> Constr #

dataTypeOf :: Float -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Float) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

Data Int 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int #

toConstr :: Int -> Constr #

dataTypeOf :: Int -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

Data Int8 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 #

toConstr :: Int8 -> Constr #

dataTypeOf :: Int8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) #

gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

Data Int16 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 #

toConstr :: Int16 -> Constr #

dataTypeOf :: Int16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) #

gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

Data Int32 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 #

toConstr :: Int32 -> Constr #

dataTypeOf :: Int32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) #

gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

Data Int64 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 #

toConstr :: Int64 -> Constr #

dataTypeOf :: Int64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) #

gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

Data Integer 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer #

toConstr :: Integer -> Constr #

dataTypeOf :: Integer -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Integer) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) #

gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

Data Ordering 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering #

toConstr :: Ordering -> Constr #

dataTypeOf :: Ordering -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) #

gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

Data Word 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word #

toConstr :: Word -> Constr #

dataTypeOf :: Word -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

Data Word8 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 #

toConstr :: Word8 -> Constr #

dataTypeOf :: Word8 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word8) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) #

gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

Data Word16 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 #

toConstr :: Word16 -> Constr #

dataTypeOf :: Word16 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word16) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) #

gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

Data Word32 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 #

toConstr :: Word32 -> Constr #

dataTypeOf :: Word32 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word32) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) #

gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

Data Word64 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 #

toConstr :: Word64 -> Constr #

dataTypeOf :: Word64 -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word64) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) #

gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

Data () 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () #

toConstr :: () -> Constr #

dataTypeOf :: () -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ()) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) #

gmapT :: (forall b. Data b => b -> b) -> () -> () #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r #

gmapQ :: (forall d. Data d => d -> u) -> () -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () #

Data SpecConstrAnnotation 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation #

toConstr :: SpecConstrAnnotation -> Constr #

dataTypeOf :: SpecConstrAnnotation -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) #

gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r #

gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation #

Data Natural 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural #

toConstr :: Natural -> Constr #

dataTypeOf :: Natural -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Natural) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) #

gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

Data Void 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void #

toConstr :: Void -> Constr #

dataTypeOf :: Void -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Void) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) #

gmapT :: (forall b. Data b => b -> b) -> Void -> Void #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r #

gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void #

Data Version 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version #

toConstr :: Version -> Constr #

dataTypeOf :: Version -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Version) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) #

gmapT :: (forall b. Data b => b -> b) -> Version -> Version #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r #

gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version #

Data All 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All #

toConstr :: All -> Constr #

dataTypeOf :: All -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c All) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) #

gmapT :: (forall b. Data b => b -> b) -> All -> All #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQ :: (forall d. Data d => d -> u) -> All -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

Data Any 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any #

toConstr :: Any -> Constr #

dataTypeOf :: Any -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Any) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) #

gmapT :: (forall b. Data b => b -> b) -> Any -> Any #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

Data Fixity 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity #

toConstr :: Fixity -> Constr #

dataTypeOf :: Fixity -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) #

gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r #

gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity #

Data Associativity 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity #

toConstr :: Associativity -> Constr #

dataTypeOf :: Associativity -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) #

gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r #

gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity #

Data SourceUnpackedness 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness #

toConstr :: SourceUnpackedness -> Constr #

dataTypeOf :: SourceUnpackedness -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) #

gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r #

gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness #

Data SourceStrictness 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness #

toConstr :: SourceStrictness -> Constr #

dataTypeOf :: SourceStrictness -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) #

gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r #

gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness #

Data DecidedStrictness 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness #

toConstr :: DecidedStrictness -> Constr #

dataTypeOf :: DecidedStrictness -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) #

gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r #

gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness #

Data String # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> String -> c String #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c String #

toConstr :: String -> Constr #

dataTypeOf :: String -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c String) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c String) #

gmapT :: (forall b. Data b => b -> b) -> String -> String #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> String -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> String -> r #

gmapQ :: (forall d. Data d => d -> u) -> String -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> String -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> String -> m String #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> String -> m String #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> String -> m String #

Data Encoding # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Encoding -> c Encoding #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Encoding #

toConstr :: Encoding -> Constr #

dataTypeOf :: Encoding -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Encoding) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Encoding) #

gmapT :: (forall b. Data b => b -> b) -> Encoding -> Encoding #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Encoding -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Encoding -> r #

gmapQ :: (forall d. Data d => d -> u) -> Encoding -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Encoding -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Encoding -> m Encoding #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Encoding -> m Encoding #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Encoding -> m Encoding #

Data a => Data [a] 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] #

toConstr :: [a] -> Constr #

dataTypeOf :: [a] -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c [a]) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) #

gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r #

gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] #

Data a => Data (Maybe a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) #

toConstr :: Maybe a -> Constr #

dataTypeOf :: Maybe a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) #

gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

(Data a, Integral a) => Data (Ratio a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) #

toConstr :: Ratio a -> Constr #

dataTypeOf :: Ratio a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) #

gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

Data a => Data (Ptr a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) #

toConstr :: Ptr a -> Constr #

dataTypeOf :: Ptr a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) #

gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

Data p => Data (V1 p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) #

toConstr :: V1 p -> Constr #

dataTypeOf :: V1 p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) #

gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r #

gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) #

Data p => Data (U1 p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) #

toConstr :: U1 p -> Constr #

dataTypeOf :: U1 p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) #

gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r #

gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) #

Data p => Data (Par1 p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) #

toConstr :: Par1 p -> Constr #

dataTypeOf :: Par1 p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) #

gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r #

gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) #

Data a => Data (Identity a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) #

toConstr :: Identity a -> Constr #

dataTypeOf :: Identity a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) #

gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

Data a => Data (Min a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) #

toConstr :: Min a -> Constr #

dataTypeOf :: Min a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) #

gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

Data a => Data (Max a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) #

toConstr :: Max a -> Constr #

dataTypeOf :: Max a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) #

gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

Data a => Data (First a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) #

toConstr :: First a -> Constr #

dataTypeOf :: First a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) #

gmapT :: (forall b. Data b => b -> b) -> First a -> First a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

Data a => Data (Last a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) #

toConstr :: Last a -> Constr #

dataTypeOf :: Last a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) #

gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

Data m => Data (WrappedMonoid m) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) #

toConstr :: WrappedMonoid m -> Constr #

dataTypeOf :: WrappedMonoid m -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) #

gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

Data a => Data (Option a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) #

toConstr :: Option a -> Constr #

dataTypeOf :: Option a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) #

gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

Data a => Data (NonEmpty a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) #

toConstr :: NonEmpty a -> Constr #

dataTypeOf :: NonEmpty a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) #

gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

Data a => Data (ForeignPtr a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) #

toConstr :: ForeignPtr a -> Constr #

dataTypeOf :: ForeignPtr a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) #

gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) #

Data a => Data (Dual a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) #

toConstr :: Dual a -> Constr #

dataTypeOf :: Dual a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) #

gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

Data a => Data (Sum a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) #

toConstr :: Sum a -> Constr #

dataTypeOf :: Sum a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) #

gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

Data a => Data (Product a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) #

toConstr :: Product a -> Constr #

dataTypeOf :: Product a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) #

gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

Data a => Data (First a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) #

toConstr :: First a -> Constr #

dataTypeOf :: First a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) #

gmapT :: (forall b. Data b => b -> b) -> First a -> First a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

Data a => Data (Last a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) #

toConstr :: Last a -> Constr #

dataTypeOf :: Last a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) #

gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

Data ty => Data (Block ty) # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Block ty -> c (Block ty) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Block ty) #

toConstr :: Block ty -> Constr #

dataTypeOf :: Block ty -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Block ty)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Block ty)) #

gmapT :: (forall b. Data b => b -> b) -> Block ty -> Block ty #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Block ty -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Block ty -> r #

gmapQ :: (forall d. Data d => d -> u) -> Block ty -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Block ty -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Block ty -> m (Block ty) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Block ty -> m (Block ty) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Block ty -> m (Block ty) #

Data ty => Data (UArray ty) # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UArray ty -> c (UArray ty) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (UArray ty) #

toConstr :: UArray ty -> Constr #

dataTypeOf :: UArray ty -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (UArray ty)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (UArray ty)) #

gmapT :: (forall b. Data b => b -> b) -> UArray ty -> UArray ty #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UArray ty -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UArray ty -> r #

gmapQ :: (forall d. Data d => d -> u) -> UArray ty -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UArray ty -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UArray ty -> m (UArray ty) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UArray ty -> m (UArray ty) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UArray ty -> m (UArray ty) #

Data ty => Data (Array ty) # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Array ty -> c (Array ty) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array ty) #

toConstr :: Array ty -> Constr #

dataTypeOf :: Array ty -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Array ty)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array ty)) #

gmapT :: (forall b. Data b => b -> b) -> Array ty -> Array ty #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array ty -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array ty -> r #

gmapQ :: (forall d. Data d => d -> u) -> Array ty -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Array ty -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array ty -> m (Array ty) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array ty -> m (Array ty) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array ty -> m (Array ty) #

(Data a, Data b) => Data (Either a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> Either a b -> c (Either a b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) #

toConstr :: Either a b -> Constr #

dataTypeOf :: Either a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) #

gmapT :: (forall c. Data c => c -> c) -> Either a b -> Either a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

(Data (f p), Typeable (* -> *) f, Data p) => Data (Rec1 f p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) #

toConstr :: Rec1 f p -> Constr #

dataTypeOf :: Rec1 f p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) #

gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r #

gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) #

(Data a, Data b) => Data (a, b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> (a, b) -> c (a, b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) #

toConstr :: (a, b) -> Constr #

dataTypeOf :: (a, b) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) #

gmapT :: (forall c. Data c => c -> c) -> (a, b) -> (a, b) #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r #

gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) #

(Data a, Data b, Ix a) => Data (Array a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> Array a b -> c (Array a b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) #

toConstr :: Array a b -> Constr #

dataTypeOf :: Array a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) #

gmapT :: (forall c. Data c => c -> c) -> Array a b -> Array a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

(Data b, Data a) => Data (Arg a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) #

toConstr :: Arg a b -> Constr #

dataTypeOf :: Arg a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) #

gmapT :: (forall c. Data c => c -> c) -> Arg a b -> Arg a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

Data t => Data (Proxy * t) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy * t -> c (Proxy * t) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy * t) #

toConstr :: Proxy * t -> Constr #

dataTypeOf :: Proxy * t -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Proxy * t)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Proxy * t)) #

gmapT :: (forall b. Data b => b -> b) -> Proxy * t -> Proxy * t #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy * t -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy * t -> r #

gmapQ :: (forall d. Data d => d -> u) -> Proxy * t -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy * t -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy * t -> m (Proxy * t) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy * t -> m (Proxy * t) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy * t -> m (Proxy * t) #

(Typeable * i, Data p, Data c) => Data (K1 i c p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> K1 i c p -> c (K1 i c p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (K1 i c p) #

toConstr :: K1 i c p -> Constr #

dataTypeOf :: K1 i c p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (K1 i c p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (K1 i c p)) #

gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r #

gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) #

(Typeable (* -> *) f, Typeable (* -> *) g, Data p, Data (f p), Data (g p)) => Data ((:+:) f g p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall a. a -> c a) -> (f :+: g) p -> c ((f :+: g) p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) #

toConstr :: (f :+: g) p -> Constr #

dataTypeOf :: (f :+: g) p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) #

gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) #

(Typeable (* -> *) f, Typeable (* -> *) g, Data p, Data (f p), Data (g p)) => Data ((:*:) f g p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall a. a -> c a) -> (f :*: g) p -> c ((f :*: g) p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) #

toConstr :: (f :*: g) p -> Constr #

dataTypeOf :: (f :*: g) p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) #

gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) #

(Typeable (* -> *) f, Typeable (* -> *) g, Data p, Data (f (g p))) => Data ((:.:) f g p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall a. a -> c a) -> (f :.: g) p -> c ((f :.: g) p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) #

toConstr :: (f :.: g) p -> Constr #

dataTypeOf :: (f :.: g) p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) #

gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) #

(Data a, Data b, Data c) => Data (a, b, c) 

Methods

gfoldl :: (forall d e. Data d => c (d -> e) -> d -> c e) -> (forall g. g -> c g) -> (a, b, c) -> c (a, b, c) #

gunfold :: (forall d r. Data d => c (d -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b, c) #

toConstr :: (a, b, c) -> Constr #

dataTypeOf :: (a, b, c) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (a, b, c)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b, c)) #

gmapT :: (forall d. Data d => d -> d) -> (a, b, c) -> (a, b, c) #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r #

gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) #

(Data (f a), Data a, Typeable (* -> *) f) => Data (Alt * f a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt * f a -> c (Alt * f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt * f a) #

toConstr :: Alt * f a -> Constr #

dataTypeOf :: Alt * f a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Alt * f a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt * f a)) #

gmapT :: (forall b. Data b => b -> b) -> Alt * f a -> Alt * f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt * f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt * f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Alt * f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt * f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt * f a -> m (Alt * f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt * f a -> m (Alt * f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt * f a -> m (Alt * f a) #

(Coercible * a b, Data a, Data b) => Data (Coercion * a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> Coercion * a b -> c (Coercion * a b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion * a b) #

toConstr :: Coercion * a b -> Constr #

dataTypeOf :: Coercion * a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion * a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion * a b)) #

gmapT :: (forall c. Data c => c -> c) -> Coercion * a b -> Coercion * a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion * a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion * a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Coercion * a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion * a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion * a b -> m (Coercion * a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion * a b -> m (Coercion * a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion * a b -> m (Coercion * a b) #

((~) * a b, Data a) => Data ((:~:) * a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> (* :~: a) b -> c ((* :~: a) b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((* :~: a) b) #

toConstr :: (* :~: a) b -> Constr #

dataTypeOf :: (* :~: a) b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c ((* :~: a) b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((* :~: a) b)) #

gmapT :: (forall c. Data c => c -> c) -> (* :~: a) b -> (* :~: a) b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (* :~: a) b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (* :~: a) b -> r #

gmapQ :: (forall d. Data d => d -> u) -> (* :~: a) b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (* :~: a) b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (* :~: a) b -> m ((* :~: a) b) #

(Data p, Data (f p), Typeable Meta c, Typeable * i, Typeable (* -> *) f) => Data (M1 i c f p) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> M1 i c f p -> c (M1 i c f p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (M1 i c f p) #

toConstr :: M1 i c f p -> Constr #

dataTypeOf :: M1 i c f p -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (M1 i c f p)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (M1 i c f p)) #

gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r #

gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) #

(Data a, Data b, Data c, Data d) => Data (a, b, c, d) 

Methods

gfoldl :: (forall e f. Data e => c (e -> f) -> e -> c f) -> (forall g. g -> c g) -> (a, b, c, d) -> c (a, b, c, d) #

gunfold :: (forall e r. Data e => c (e -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b, c, d) #

toConstr :: (a, b, c, d) -> Constr #

dataTypeOf :: (a, b, c, d) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall e. Data e => c (t e)) -> Maybe (c (a, b, c, d)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall e f. (Data e, Data f) => c (t e f)) -> Maybe (c (a, b, c, d)) #

gmapT :: (forall e. Data e => e -> e) -> (a, b, c, d) -> (a, b, c, d) #

gmapQl :: (r -> r' -> r) -> r -> (forall e. Data e => e -> r') -> (a, b, c, d) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall e. Data e => e -> r') -> (a, b, c, d) -> r #

gmapQ :: (forall e. Data e => e -> u) -> (a, b, c, d) -> [u] #

gmapQi :: Int -> (forall e. Data e => e -> u) -> (a, b, c, d) -> u #

gmapM :: Monad m => (forall e. Data e => e -> m e) -> (a, b, c, d) -> m (a, b, c, d) #

gmapMp :: MonadPlus m => (forall e. Data e => e -> m e) -> (a, b, c, d) -> m (a, b, c, d) #

gmapMo :: MonadPlus m => (forall e. Data e => e -> m e) -> (a, b, c, d) -> m (a, b, c, d) #

(Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) 

Methods

gfoldl :: (forall f g. Data f => c (f -> g) -> f -> c g) -> (forall g. g -> c g) -> (a, b, c, d, e) -> c (a, b, c, d, e) #

gunfold :: (forall f r. Data f => c (f -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b, c, d, e) #

toConstr :: (a, b, c, d, e) -> Constr #

dataTypeOf :: (a, b, c, d, e) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall f. Data f => c (t f)) -> Maybe (c (a, b, c, d, e)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall f g. (Data f, Data g) => c (t f g)) -> Maybe (c (a, b, c, d, e)) #

gmapT :: (forall f. Data f => f -> f) -> (a, b, c, d, e) -> (a, b, c, d, e) #

gmapQl :: (r -> r' -> r) -> r -> (forall f. Data f => f -> r') -> (a, b, c, d, e) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall f. Data f => f -> r') -> (a, b, c, d, e) -> r #

gmapQ :: (forall f. Data f => f -> u) -> (a, b, c, d, e) -> [u] #

gmapQi :: Int -> (forall f. Data f => f -> u) -> (a, b, c, d, e) -> u #

gmapM :: Monad m => (forall f. Data f => f -> m f) -> (a, b, c, d, e) -> m (a, b, c, d, e) #

gmapMp :: MonadPlus m => (forall f. Data f => f -> m f) -> (a, b, c, d, e) -> m (a, b, c, d, e) #

gmapMo :: MonadPlus m => (forall f. Data f => f -> m f) -> (a, b, c, d, e) -> m (a, b, c, d, e) #

(Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) 

Methods

gfoldl :: (forall g h. Data g => c (g -> h) -> g -> c h) -> (forall g. g -> c g) -> (a, b, c, d, e, f) -> c (a, b, c, d, e, f) #

gunfold :: (forall g r. Data g => c (g -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b, c, d, e, f) #

toConstr :: (a, b, c, d, e, f) -> Constr #

dataTypeOf :: (a, b, c, d, e, f) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall g. Data g => c (t g)) -> Maybe (c (a, b, c, d, e, f)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall g h. (Data g, Data h) => c (t g h)) -> Maybe (c (a, b, c, d, e, f)) #

gmapT :: (forall g. Data g => g -> g) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

gmapQl :: (r -> r' -> r) -> r -> (forall g. Data g => g -> r') -> (a, b, c, d, e, f) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall g. Data g => g -> r') -> (a, b, c, d, e, f) -> r #

gmapQ :: (forall g. Data g => g -> u) -> (a, b, c, d, e, f) -> [u] #

gmapQi :: Int -> (forall g. Data g => g -> u) -> (a, b, c, d, e, f) -> u #

gmapM :: Monad m => (forall g. Data g => g -> m g) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) #

gmapMp :: MonadPlus m => (forall g. Data g => g -> m g) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) #

gmapMo :: MonadPlus m => (forall g. Data g => g -> m g) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) #

(Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) 

Methods

gfoldl :: (forall h i. Data h => c (h -> i) -> h -> c i) -> (forall h. h -> c h) -> (a, b, c, d, e, f, g) -> c (a, b, c, d, e, f, g) #

gunfold :: (forall h r. Data h => c (h -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b, c, d, e, f, g) #

toConstr :: (a, b, c, d, e, f, g) -> Constr #

dataTypeOf :: (a, b, c, d, e, f, g) -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall h. Data h => c (t h)) -> Maybe (c (a, b, c, d, e, f, g)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall h i. (Data h, Data i) => c (t h i)) -> Maybe (c (a, b, c, d, e, f, g)) #

gmapT :: (forall h. Data h => h -> h) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

gmapQl :: (r -> r' -> r) -> r -> (forall h. Data h => h -> r') -> (a, b, c, d, e, f, g) -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall h. Data h => h -> r') -> (a, b, c, d, e, f, g) -> r #

gmapQ :: (forall h. Data h => h -> u) -> (a, b, c, d, e, f, g) -> [u] #

gmapQi :: Int -> (forall h. Data h => h -> u) -> (a, b, c, d, e, f, g) -> u #

gmapM :: Monad m => (forall h. Data h => h -> m h) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) #

gmapMp :: MonadPlus m => (forall h. Data h => h -> m h) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) #

gmapMo :: MonadPlus m => (forall h. Data h => h -> m h) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) #

mkNoRepType :: String -> DataType #

Constructs a non-representation for a non-representable type

data DataType :: * #

Representation of datatypes. A package of constructor representations with names of type and module.

Instances

class Typeable k a #

The class Typeable allows a concrete representation of a type to be calculated.

Minimal complete definition

typeRep#

class Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

  • mappend mempty x = x
  • mappend x mempty = x
  • mappend x (mappend y z) = mappend (mappend x y) z
  • mconcat = foldr mappend mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

Minimal complete definition

mempty, mappend

Methods

mempty :: a #

Identity of mappend

mappend :: a -> a -> a #

An associative operation

mconcat :: [a] -> a #

Fold a list using the monoid. For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances

Monoid Ordering 
Monoid () 

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid All 

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any 

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid AsciiString # 
Monoid String # 
Monoid [a] 

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there is no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a) 

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

Ord a => Monoid (Max a) 

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Ord a => Monoid (Min a) 

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

Monoid a => Monoid (Identity a) 

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

(Ord a, Bounded a) => Monoid (Min a) 

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Max a) 

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Monoid m => Monoid (WrappedMonoid m) 
Semigroup a => Monoid (Option a) 

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid a => Monoid (Dual a) 

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a) 

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Sum a) 

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Monoid (Product a) 

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Monoid (First a) 

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a) 

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid (CountOf ty) # 

Methods

mempty :: CountOf ty #

mappend :: CountOf ty -> CountOf ty -> CountOf ty #

mconcat :: [CountOf ty] -> CountOf ty #

PrimType ty => Monoid (Block ty) # 

Methods

mempty :: Block ty #

mappend :: Block ty -> Block ty -> Block ty #

mconcat :: [Block ty] -> Block ty #

PrimType ty => Monoid (UArray ty) # 

Methods

mempty :: UArray ty #

mappend :: UArray ty -> UArray ty -> UArray ty #

mconcat :: [UArray ty] -> UArray ty #

Monoid (Array a) # 

Methods

mempty :: Array a #

mappend :: Array a -> Array a -> Array a #

mconcat :: [Array a] -> Array a #

Monoid b => Monoid (a -> b) 

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

(Monoid a, Monoid b) => Monoid (a, b) 

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid (Proxy k s) 

Methods

mempty :: Proxy k s #

mappend :: Proxy k s -> Proxy k s -> Proxy k s #

mconcat :: [Proxy k s] -> Proxy k s #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) 

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

Monoid a => Monoid (Const k a b) 

Methods

mempty :: Const k a b #

mappend :: Const k a b -> Const k a b -> Const k a b #

mconcat :: [Const k a b] -> Const k a b #

Alternative f => Monoid (Alt * f a) 

Methods

mempty :: Alt * f a #

mappend :: Alt * f a -> Alt * f a -> Alt * f a #

mconcat :: [Alt * f a] -> Alt * f a #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) 

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) 

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

(<>) :: Monoid m => m -> m -> m infixr 6 #

An infix synonym for mappend.

Since: 4.5.0.0

class (Typeable * e, Show e) => Exception e #

Any type that you wish to throw or catch as an exception must be an instance of the Exception class. The simplest case is a new exception type directly below the root:

data MyException = ThisException | ThatException
    deriving (Show, Typeable)

instance Exception MyException

The default method definitions in the Exception class do what we need in this case. You can now throw and catch ThisException and ThatException as exceptions:

*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
Caught ThisException

In more complicated examples, you may wish to define a whole hierarchy of exceptions:

---------------------------------------------------------------------
-- Make the root exception type for all the exceptions in a compiler

data SomeCompilerException = forall e . Exception e => SomeCompilerException e
    deriving Typeable

instance Show SomeCompilerException where
    show (SomeCompilerException e) = show e

instance Exception SomeCompilerException

compilerExceptionToException :: Exception e => e -> SomeException
compilerExceptionToException = toException . SomeCompilerException

compilerExceptionFromException :: Exception e => SomeException -> Maybe e
compilerExceptionFromException x = do
    SomeCompilerException a <- fromException x
    cast a

---------------------------------------------------------------------
-- Make a subhierarchy for exceptions in the frontend of the compiler

data SomeFrontendException = forall e . Exception e => SomeFrontendException e
    deriving Typeable

instance Show SomeFrontendException where
    show (SomeFrontendException e) = show e

instance Exception SomeFrontendException where
    toException = compilerExceptionToException
    fromException = compilerExceptionFromException

frontendExceptionToException :: Exception e => e -> SomeException
frontendExceptionToException = toException . SomeFrontendException

frontendExceptionFromException :: Exception e => SomeException -> Maybe e
frontendExceptionFromException x = do
    SomeFrontendException a <- fromException x
    cast a

---------------------------------------------------------------------
-- Make an exception type for a particular frontend compiler exception

data MismatchedParentheses = MismatchedParentheses
    deriving (Typeable, Show)

instance Exception MismatchedParentheses where
    toException   = frontendExceptionToException
    fromException = frontendExceptionFromException

We can now catch a MismatchedParentheses exception as MismatchedParentheses, SomeFrontendException or SomeCompilerException, but not other types, e.g. IOException:

*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: IOException))
*** Exception: MismatchedParentheses

Instances

Exception Void 
Exception BlockedIndefinitelyOnMVar 
Exception BlockedIndefinitelyOnSTM 
Exception Deadlock 
Exception AllocationLimitExceeded 
Exception AssertionFailed 
Exception SomeAsyncException 
Exception AsyncException 
Exception ArrayException 
Exception ExitCode 
Exception IOException 
Exception ErrorCall 
Exception ArithException 
Exception SomeException 
Exception NonEmptyCollectionIsEmpty # 
Exception InvalidRecast # 
Exception OutOfBound # 
Exception ValidationFailure # 

throw :: Exception e => e -> a #

Throw an exception. Exceptions may be thrown from purely functional code, but may only be caught within the IO monad.

throwIO :: Exception e => e -> IO a #

A variant of throw that can only be used within the IO monad.

Although throwIO has a type that is an instance of the type of throw, the two functions are subtly different:

throw e   `seq` x  ===> throw e
throwIO e `seq` x  ===> x

The first example will cause the exception e to be raised, whereas the second one won't. In fact, throwIO will only cause an exception to be raised when it is used within the IO monad. The throwIO variant should be used in preference to throw to raise an exception within the IO monad because it guarantees ordering with respect to other IO operations, whereas throw does not.

data Ptr a :: * -> * #

A value of type Ptr a represents a pointer to an object, or an array of objects, which may be marshalled to or from Haskell values of type a.

The type a will often be an instance of class Storable which provides the marshalling operations. However this is not essential, and you can provide your own operations to access the pointer. For example you might write small foreign functions to get or set the fields of a C struct.

Constructors

Ptr Addr# 

Instances

Eq (Ptr a) 

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Data a => Data (Ptr a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) #

toConstr :: Ptr a -> Constr #

dataTypeOf :: Ptr a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) #

gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) #

Functor (URec (Ptr ())) 

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Ord (Ptr a) 

Methods

compare :: Ptr a -> Ptr a -> Ordering #

(<) :: Ptr a -> Ptr a -> Bool #

(<=) :: Ptr a -> Ptr a -> Bool #

(>) :: Ptr a -> Ptr a -> Bool #

(>=) :: Ptr a -> Ptr a -> Bool #

max :: Ptr a -> Ptr a -> Ptr a #

min :: Ptr a -> Ptr a -> Ptr a #

Show (Ptr a) 

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Foldable (URec (Ptr ())) 

Methods

fold :: Monoid m => URec (Ptr ()) m -> m #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

toList :: URec (Ptr ()) a -> [a] #

null :: URec (Ptr ()) a -> Bool #

length :: URec (Ptr ()) a -> Int #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool #

maximum :: Ord a => URec (Ptr ()) a -> a #

minimum :: Ord a => URec (Ptr ()) a -> a #

sum :: Num a => URec (Ptr ()) a -> a #

product :: Num a => URec (Ptr ()) a -> a #

Generic1 (URec (Ptr ())) 

Associated Types

type Rep1 (URec (Ptr ()) :: * -> *) :: * -> * #

Methods

from1 :: URec (Ptr ()) a -> Rep1 (URec (Ptr ())) a #

to1 :: Rep1 (URec (Ptr ())) a -> URec (Ptr ()) a #

Storable (Ptr a) 

Methods

sizeOf :: Ptr a -> Int #

alignment :: Ptr a -> Int #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () #

peek :: Ptr (Ptr a) -> IO (Ptr a) #

poke :: Ptr (Ptr a) -> Ptr a -> IO () #

NormalForm (Ptr a) # 

Methods

toNormalForm :: Ptr a -> () #

Eq (URec (Ptr ()) p) 

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

Ord (URec (Ptr ()) p) 

Methods

compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering #

(<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

Generic (URec (Ptr ()) p) 

Associated Types

type Rep (URec (Ptr ()) p) :: * -> * #

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p #

type Rep1 (URec (Ptr ())) 
type Rep1 (URec (Ptr ())) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just Symbol "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UAddr))
data URec (Ptr ())

Used for marking occurrences of Addr#

data URec (Ptr ()) = UAddr {}
type Rep (URec (Ptr ()) p) 
type Rep (URec (Ptr ()) p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just Symbol "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) UAddr))

ifThenElse :: Bool -> a -> a -> a #

for support of if .. then .. else

internalError :: [Char] -> a #

Only to use internally for internal error cases