bifunctors-5.4.2: Bifunctors

Copyright(C) 2008-2016 Jesse Selover Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityprovisional
Portabilityportable
Safe HaskellSafe
LanguageHaskell98

Data.Bifunctor.Product

Description

The product of two bifunctors.

Synopsis

Documentation

data Product f g a b #

Form the product of two bifunctors

Constructors

Pair (f a b) (g a b) 

Instances

BifunctorFunctor k k1 k k1 (Product k k1 p) # 

Methods

bifmap :: (k :-> k) p q -> (Product k k1 p :-> k) (t p) (t q) #

BifunctorComonad k k1 (Product k k1 p) # 

Methods

biextract :: t p a b -> p a b #

biextend :: (Product k k1 p :-> k) (t p) q -> (Product k k1 p :-> k) (t p) (t q) #

biduplicate :: t p a b -> t (t p) a b #

(Bifunctor f, Bifunctor g) => Bifunctor (Product * * f g) # 

Methods

bimap :: (a -> b) -> (c -> d) -> Product * * f g a c -> Product * * f g b d #

first :: (a -> b) -> Product * * f g a c -> Product * * f g b c #

second :: (b -> c) -> Product * * f g a b -> Product * * f g a c #

(Bifoldable f, Bifoldable g) => Bifoldable (Product * * f g) # 

Methods

bifold :: Monoid m => Product * * f g m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Product * * f g a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Product * * f g a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Product * * f g a b -> c #

(Bitraversable f, Bitraversable g) => Bitraversable (Product * * f g) # 

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Product * * f g a b -> f (Product * * f g c d) #

(Biapplicative f, Biapplicative g) => Biapplicative (Product * * f g) # 

Methods

bipure :: a -> b -> Product * * f g a b #

(<<*>>) :: Product * * f g (a -> b) (c -> d) -> Product * * f g a c -> Product * * f g b d #

(*>>) :: Product * * f g a b -> Product * * f g c d -> Product * * f g c d #

(<<*) :: Product * * f g a b -> Product * * f g c d -> Product * * f g a b #

Generic1 (Product * k f g a) # 

Associated Types

type Rep1 (Product * k f g a :: * -> *) :: * -> * #

Methods

from1 :: Product * k f g a a -> Rep1 (Product * k f g a) a #

to1 :: Rep1 (Product * k f g a) a -> Product * k f g a a #

(Eq (g a b), Eq (f a b)) => Eq (Product k1 k f g a b) # 

Methods

(==) :: Product k1 k f g a b -> Product k1 k f g a b -> Bool #

(/=) :: Product k1 k f g a b -> Product k1 k f g a b -> Bool #

(Ord (g a b), Ord (f a b)) => Ord (Product k1 k f g a b) # 

Methods

compare :: Product k1 k f g a b -> Product k1 k f g a b -> Ordering #

(<) :: Product k1 k f g a b -> Product k1 k f g a b -> Bool #

(<=) :: Product k1 k f g a b -> Product k1 k f g a b -> Bool #

(>) :: Product k1 k f g a b -> Product k1 k f g a b -> Bool #

(>=) :: Product k1 k f g a b -> Product k1 k f g a b -> Bool #

max :: Product k1 k f g a b -> Product k1 k f g a b -> Product k1 k f g a b #

min :: Product k1 k f g a b -> Product k1 k f g a b -> Product k1 k f g a b #

(Read (g a b), Read (f a b)) => Read (Product k1 k f g a b) # 

Methods

readsPrec :: Int -> ReadS (Product k1 k f g a b) #

readList :: ReadS [Product k1 k f g a b] #

readPrec :: ReadPrec (Product k1 k f g a b) #

readListPrec :: ReadPrec [Product k1 k f g a b] #

(Show (g a b), Show (f a b)) => Show (Product k1 k f g a b) # 

Methods

showsPrec :: Int -> Product k1 k f g a b -> ShowS #

show :: Product k1 k f g a b -> String #

showList :: [Product k1 k f g a b] -> ShowS #

Generic (Product k1 k f g a b) # 

Associated Types

type Rep (Product k1 k f g a b) :: * -> * #

Methods

from :: Product k1 k f g a b -> Rep (Product k1 k f g a b) x #

to :: Rep (Product k1 k f g a b) x -> Product k1 k f g a b #

type Rep1 (Product * k f g a) # 
type Rep1 (Product * k f g a) = D1 (MetaData "Product" "Data.Bifunctor.Product" "bifunctors-5.4.2-F4sCnFKuRGj7fkepfA4lkE" False) (C1 (MetaCons "Pair" PrefixI False) ((:*:) (S1 (MetaSel (Nothing Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 (f a))) (S1 (MetaSel (Nothing Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 (g a)))))
type Rep (Product k1 k f g a b) # 
type Rep (Product k1 k f g a b) = D1 (MetaData "Product" "Data.Bifunctor.Product" "bifunctors-5.4.2-F4sCnFKuRGj7fkepfA4lkE" False) (C1 (MetaCons "Pair" PrefixI False) ((:*:) (S1 (MetaSel (Nothing Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f a b))) (S1 (MetaSel (Nothing Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (g a b)))))