Control.Alternative.Free.Final

Description

Final encoding of free Alternative functors.

Synopsis

Documentation

newtype Alt f a #

The free Alternative for a Functor f.

Constructors

 Alt Fields_runAlt :: forall g. Alternative g => (forall x. f x -> g x) -> g a

Instances

 Functor (Alt f) # Methodsfmap :: (a -> b) -> Alt f a -> Alt f b #(<\$) :: a -> Alt f b -> Alt f a # # Methodspure :: a -> Alt f a #(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #(*>) :: Alt f a -> Alt f b -> Alt f b #(<*) :: Alt f a -> Alt f b -> Alt f a # # Methodsempty :: Alt f a #(<|>) :: Alt f a -> Alt f a -> Alt f a #some :: Alt f a -> Alt f [a] #many :: Alt f a -> Alt f [a] # Alt (Alt f) # Methods() :: Alt f a -> Alt f a -> Alt f a #some :: Applicative (Alt f) => Alt f a -> Alt f [a] #many :: Applicative (Alt f) => Alt f a -> Alt f [a] # Apply (Alt f) # Methods(<.>) :: Alt f (a -> b) -> Alt f a -> Alt f b #(.>) :: Alt f a -> Alt f b -> Alt f b #(<.) :: Alt f a -> Alt f b -> Alt f a # Semigroup (Alt f a) # Methods(<>) :: Alt f a -> Alt f a -> Alt f a #sconcat :: NonEmpty (Alt f a) -> Alt f a #stimes :: Integral b => b -> Alt f a -> Alt f a # Monoid (Alt f a) # Methodsmempty :: Alt f a #mappend :: Alt f a -> Alt f a -> Alt f a #mconcat :: [Alt f a] -> Alt f a #

runAlt :: forall f g a. Alternative g => (forall x. f x -> g x) -> Alt f a -> g a #

Given a natural transformation from f to g, this gives a canonical monoidal natural transformation from Alt f to g.

liftAlt :: f a -> Alt f a #

A version of lift that can be used with f.

hoistAlt :: (forall a. f a -> g a) -> Alt f b -> Alt g b #

Given a natural transformation from f to g this gives a monoidal natural transformation from Alt f to Alt g.