semigroupoids-5.2.1: Semigroupoids: Category sans id

Data.Semigroup.Traversable

Description

# Documentation

class (Foldable1 t, Traversable t) => Traversable1 t where #

Minimal complete definition

Methods

traverse1 :: Apply f => (a -> f b) -> t a -> f (t b) #

sequence1 :: Apply f => t (f b) -> f (t b) #

Instances

 # Methodstraverse1 :: Apply f => (a -> f b) -> V1 a -> f (V1 b) #sequence1 :: Apply f => V1 (f b) -> f (V1 b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Par1 a -> f (Par1 b) #sequence1 :: Apply f => Par1 (f b) -> f (Par1 b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Identity a -> f (Identity b) #sequence1 :: Apply f => Identity (f b) -> f (Identity b) # # Methodstraverse1 :: Apply f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #sequence1 :: Apply f => NonEmpty (f b) -> f (NonEmpty b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Complex a -> f (Complex b) #sequence1 :: Apply f => Complex (f b) -> f (Complex b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Tree a -> f (Tree b) #sequence1 :: Apply f => Tree (f b) -> f (Tree b) # Traversable1 f => Traversable1 (Rec1 f) # Methodstraverse1 :: Apply f => (a -> f b) -> Rec1 f a -> f (Rec1 f b) #sequence1 :: Apply f => Rec1 f (f b) -> f (Rec1 f b) # # Methodstraverse1 :: Apply f => (a -> f b) -> (a, a) -> f (a, b) #sequence1 :: Apply f => (a, f b) -> f (a, b) # Traversable1 f => Traversable1 (Lift f) # Methodstraverse1 :: Apply f => (a -> f b) -> Lift f a -> f (Lift f b) #sequence1 :: Apply f => Lift f (f b) -> f (Lift f b) # (Traversable1 f, Traversable1 g) => Traversable1 ((:+:) f g) # Methodstraverse1 :: Apply f => (a -> f b) -> (f :+: g) a -> f ((f :+: g) b) #sequence1 :: Apply f => (f :+: g) (f b) -> f ((f :+: g) b) # (Traversable1 f, Traversable1 g) => Traversable1 ((:*:) f g) # Methodstraverse1 :: Apply f => (a -> f b) -> (f :*: g) a -> f ((f :*: g) b) #sequence1 :: Apply f => (f :*: g) (f b) -> f ((f :*: g) b) # (Traversable1 f, Traversable1 g) => Traversable1 ((:.:) f g) # Methodstraverse1 :: Apply f => (a -> f b) -> (f :.: g) a -> f ((f :.: g) b) #sequence1 :: Apply f => (f :.: g) (f b) -> f ((f :.: g) b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Join * p a -> f (Join * p b) #sequence1 :: Apply f => Join * p (f b) -> f (Join * p b) # # Methodstraverse1 :: Apply f => (a -> f b) -> IdentityT * f a -> f (IdentityT * f b) #sequence1 :: Apply f => IdentityT * f (f b) -> f (IdentityT * f b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Tagged * a a -> f (Tagged * a b) #sequence1 :: Apply f => Tagged * a (f b) -> f (Tagged * a b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Reverse * f a -> f (Reverse * f b) #sequence1 :: Apply f => Reverse * f (f b) -> f (Reverse * f b) # # Methodstraverse1 :: Apply f => (a -> f b) -> Backwards * f a -> f (Backwards * f b) #sequence1 :: Apply f => Backwards * f (f b) -> f (Backwards * f b) # Traversable1 f => Traversable1 (M1 i c f) # Methodstraverse1 :: Apply f => (a -> f b) -> M1 i c f a -> f (M1 i c f b) #sequence1 :: Apply f => M1 i c f (f b) -> f (M1 i c f b) # (Traversable1 f, Traversable1 g) => Traversable1 (Sum * f g) # Methodstraverse1 :: Apply f => (a -> f b) -> Sum * f g a -> f (Sum * f g b) #sequence1 :: Apply f => Sum * f g (f b) -> f (Sum * f g b) # (Traversable1 f, Traversable1 g) => Traversable1 (Product * f g) # Methodstraverse1 :: Apply f => (a -> f b) -> Product * f g a -> f (Product * f g b) #sequence1 :: Apply f => Product * f g (f b) -> f (Product * f g b) # (Traversable1 f, Traversable1 g) => Traversable1 (Compose * * f g) # Methodstraverse1 :: Apply f => (a -> f b) -> Compose * * f g a -> f (Compose * * f g b) #sequence1 :: Apply f => Compose * * f g (f b) -> f (Compose * * f g b) # Traversable1 g => Traversable1 (Joker * * g a) # Methodstraverse1 :: Apply f => (a -> f b) -> Joker * * g a a -> f (Joker * * g a b) #sequence1 :: Apply f => Joker * * g a (f b) -> f (Joker * * g a b) #

foldMap1Default :: (Traversable1 f, Semigroup m) => (a -> m) -> f a -> m #