Copyright  (c) 20132015 diagramscore team (see LICENSE) 

License  BSDstyle (see LICENSE) 
Maintainer  diagramsdiscuss@googlegroups.com 
Safe Haskell  None 
Language  Haskell2010 
The monoid of endomorphisms over any Category
.
Synopsis
 newtype Endomorphism k a = Endomorphism {
 getEndomorphism :: k a a
Documentation
newtype Endomorphism k a #
An Endomorphism
in a given Category
is a morphism from some
object to itself. The set of endomorphisms for a particular
object form a monoid, with composition as the combining operation
and the identity morphism as the identity element.
Endomorphism  

Instances
Show (k a a) => Show (Endomorphism k a) #  
Defined in Data.Monoid.Endomorphism showsPrec :: Int > Endomorphism k a > ShowS # show :: Endomorphism k a > String # showList :: [Endomorphism k a] > ShowS #  
Semigroupoid k => Semigroup (Endomorphism k a) #  
Defined in Data.Monoid.Endomorphism (<>) :: Endomorphism k a > Endomorphism k a > Endomorphism k a # sconcat :: NonEmpty (Endomorphism k a) > Endomorphism k a # stimes :: Integral b => b > Endomorphism k a > Endomorphism k a #  
(Semigroupoid k, Category k) => Monoid (Endomorphism k a) #  
Defined in Data.Monoid.Endomorphism mempty :: Endomorphism k a # mappend :: Endomorphism k a > Endomorphism k a > Endomorphism k a # mconcat :: [Endomorphism k a] > Endomorphism k a #  
(Category k, Groupoid k) => Group (Endomorphism k a) #  
Defined in Data.Monoid.Endomorphism invert :: Endomorphism k a > Endomorphism k a # pow :: Integral x => Endomorphism k a > x > Endomorphism k a # 