statistics-0.15.0.0: A library of statistical types, data, and functions

Statistics.Distribution.Laplace

Contents

Description

The Laplace distribution. This is the continuous probability defined as the difference of two iid exponential random variables or a Brownian motion evaluated as exponentially distributed times. It is used in differential privacy (Laplace Method), speech recognition and least absolute deviations method (Laplace's first law of errors, giving a robust regression method)

Synopsis

# Documentation

Instances
 # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LaplaceDistribution -> c LaplaceDistribution #gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LaplaceDistribution #dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LaplaceDistribution) #dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LaplaceDistribution) #gmapT :: (forall b. Data b => b -> b) -> LaplaceDistribution -> LaplaceDistribution #gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #gmapQ :: (forall d. Data d => d -> u) -> LaplaceDistribution -> [u] #gmapQi :: Int -> (forall d. Data d => d -> u) -> LaplaceDistribution -> u #gmapM :: Monad m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution # # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Associated Typestype Rep LaplaceDistribution :: Type -> Type # Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace MethodsputList :: [LaplaceDistribution] -> Put # # Instance detailsDefined in Statistics.Distribution.Laplace MethodsgenContVar :: PrimMonad m => LaplaceDistribution -> Gen (PrimState m) -> m Double # # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace Methods # Create Laplace distribution from sample. No tests are made to check whether it truly is Laplace. Location of distribution estimated as median of sample. Instance detailsDefined in Statistics.Distribution.Laplace Methods # Instance detailsDefined in Statistics.Distribution.Laplace type Rep LaplaceDistribution = D1 (MetaData "LaplaceDistribution" "Statistics.Distribution.Laplace" "statistics-0.15.0.0-KYJLg9h4jsl1bBm8KLc3A8" False) (C1 (MetaCons "LD" PrefixI True) (S1 (MetaSel (Just "ldLocation") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double) :*: S1 (MetaSel (Just "ldScale") SourceUnpack SourceStrict DecidedStrict) (Rec0 Double)))

# Constructors

Arguments

 :: Double Location -> Double Scale -> LaplaceDistribution

Create an Laplace distribution.

Arguments

 :: Double Location -> Double Scale -> Maybe LaplaceDistribution

Create an Laplace distribution.

Location.

Scale.